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CHAPTER 1.

BENDING OF STRAIGHT SHAFTS AND THE SIMPLEST SHAFT SYSTEI.S
4

Brief Theoretical Information

The differential equation for the bending of beams with

variable cross sections which support a distributed load of

intensity q(x) haz the form

E(X) r]" 9 ((1.1)

where E is the modulus of normal elasticity of the beam material;

I is the moment of inertia of the cross-sectional area of the beam.

The integral of this equation can be written in the form

__'xd+1. (1.2)

+.4 1 'r + . . .: f. ;"

• .00. . m ,., UtlC A a -

where NO, M0 , *0 and fo are the shear force, bending moment, angle

of rotation and bending point of the beam on itz cro-s Fection

with coordinate x=O, respectively, determined from the boundary

conditions for fastening the end sections of the beam.

The elastic line for knife-edge beams which support distribu-

ted load q(x) is determined by the equation

FTD-ID(RS)1I-2386-75



If the knife-edge beam is loaded by cc~icentCrated force P and

m oment MI, as well as by a distributed load which has a different

* ~law of change~ in different sections along the beam, the elastic

* ~line or the beamn can be determinel by the initial parametere

method, using the exprezsion

P~x-At M(x azv

I jr f 19J J q(x)-q. (x)j (dx)&, (1.4~)
5?5as -&$ *g *

where a,, a 2 and a 3are the cross-sectiona~l coordinates where
concentrated force P and moment M are applied; q1(x) and q 2(x) are

the load on the section along the beam O~gx~a 3and a 3: :
respectively (Z is the length or the beam),

If concentrated moments are not applied to the beam, its

elastic line is found from shear v. (x) by integrating the equation

W;(X) N 'z) £1.M -E 7 (zr)(1 5

where G is the ohear modulu.1; w is the area of the cross section
of the beam wall, hence

M (z) EIhiif a

When the beami load. is made up of concentrated !moeneftc,

bending mnomen~t 14j(x) shOUld signify that portion of the total

FTD-ID(RS)1-2386-75 2
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bending moment which acts in cross section x of the beam, which

is created by the external load, with tCe exception of the concen-

trated moments applied, when determining the elastic line from

shear according to formula (1.6). The concentrated moments do not

cause displacements from shear and impart only an additional

rotation which is determined by the expression q---- M ,

where M is the i-th concentrated moment acting on the beam, as

a result of the shearing strain of the entire cross section of the
beam.

The integration constants in expressions (1.2)-(1.4) should

be determined from the condition for fastening the support sectionc

of the beam. So, if the support sections of the beam (x-O) and

(x-1) are fixed elastically or. elastic supports, the boundary

conditions are written in the form

x -O wt, + au-Aj[EI (X)uW1 W-9iEr; (tlý
x - I w, + A2 - AEI (X) W; - -9.LIEIW;,

where A. and A2 are the pliability coefficients of the elastic

supports; U 1. , are the pliability coefficients of the elastic

fixings, which can be expressed by the coefficients of the support

pair which are the ratio of the support moment for the elastic

fixing of the beam ends MAp to the moment in tne support section
Mm

of the same beam for rigid fixing of its ends VWm,; X-.N .

For a knife-edge beam, when U&9L.i and the load acting'on

the beam is symmetrical relative to the middle of its length, the

coefficient of the support pair does not depend on the value or

the nature of the change in load and it is determined from the
formula

I+

L5



The bending ele',ent-_ý of the beams ,.re the linear functionc of ti'.:-•
support pair coefficient.

Various methodr; are used to dlir-clcse the static uzncertainty
of continuous beam:ý. If a continuous beam rests fr-eely on inter-
mediate supports, it is advisable to take the moments on the
support- as the fundamental unknown forces (forces rethod). The
angles of rotation of the support n•ection-, are used as th'e funda-
mental unknowns for continuous beams which are elastically
fastened onto intermediate supports (strain method).

If the support moments are used as the basic unknowns in or-Jer
to determine the static uncurtainty of a continuous beam, the
condition of the equality of the rotation angles of sectiono on a

common support for two adjacent beam spans stressed by the given
external load and unknown support mo..lents chould be ti,-ed to co:--.
pose the system of equations w-, •h deteriT.ne these m.oments. When

elastic supports are preient, sagging of these supports are alZo
taken as the unknowns along wi the support moments. In this

Scase, it is necessary to compoo.: additional equations to solve the
S~problem, the equations obtained florm examining the equilibrium

state of elactic supports being advisable for this purpose.

In this case the system of equations w'ill be the follow:ing:

conditions for the equality of the rotation angles at the J-th

support

' J1_ + ÷ E• + a/( M) + I

The condition of the equilibritii of the J-th elaCtic cupport

where •j , •lare the length of the zpnbetw:eon (j - and ti.e

J-th support and between the J-th arid the (J + 1) support,

44
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re.;pectively; Q 0, is the exterfndl load ac.ing on spans (J - 1),

J and J, (j + 1), respectlvj~ly; a (Qj), aj(Qj.i) a:e the angles
of rotation of the 3ection on the j-th :upport from the load i:n

span (j - I), j and J, (j + 1), respec Lvely; 11ji; i j; (j+ are

the support moments on supports (j - 1), J, (J + 1), respectively;
fJ-f; fi; f are the :,'"g ing of supports (j - 1), j, (j + 1),

respectively; A is the pliability coefficient of the J-th elastic
support; I j and Ii+1 are the moments of inertia of the crosc-

sectional area of ti-e beam in spans (j - 1), j and J, (J + 1),
respectively; cj and c j+i aru the distances of equivalent loads

Qj and QJ-I respectively, from a support placud to the left of

them.

The condition of the equilibrium of separate joints of the beam

should be used comnpose the system of equations deter'.;ining the
angles of rotation of the support sections if these angles are

used as the unknowns. The dependence between the angles of rotation
of the support sections and the support mou-nt. when elastic supportf

are present can be written in the form

1, 17 1 = - - j,, + cc,

where 1ij is the support moment at the i-th support of beam span
i-J; • is the moment on the i-th support from the load acting

on span i-j with the assumption of the total fixing of the end
sections of this span; ai and a j are the rotation angles of the
section on the i-th and J-th supports, respectively; f and fI

are the sagging of the i-th and j-th supports. Then the system of
equation:; obtained from the condition of the equilibrium of the

moments applied to the i-th joint (support) will be

I I I .

where - ij the external mom-ent which acts on the i-th joint.

5



1.

Additional equations should be written in form (1.10).

The momentF in the joints and the displacement of mobile joints

(if there are any) are taken as the unknowns when designing simple

plane asserblies composed of straight shafts. The equations which

determine the static uncertainty of these frames are com osed by
equating the angles of rotation of the shaft sections at their

common joints according to system (1.9). The principle of potential

displacements can be used to compose additional equations. In this

case, the sum of the work of all. the external forces and the moments

of the joints for potential displacements are equated t'o zero

(assuming that h~nges are :mounted on the joints).

When designing complex assemblies, i. e., frames in which

more tha- two shafts can converge at the joints, it is advisable

to use the angles of the joints' rot-ation from the load and the

angles of obliquity (if mobile joints are present) as the unknowns.

The equations which determine the static uncertainty of complex

assemblies are obtained from the equilibrium equations of the frame

Joints. Additional equations are co.r.posed for assemblies with

mobile joints and rectangular floors on the basis of the principle

of potential displacementz.

The kinematic relationships which relate the angles of

obliquity of the shafts to each other shoulG De used to reduce

the number of unknown angles of obliquity of complex frames.

Complex assemblies can also be designed by using the method of the

successive balancing of joints.

When designing simple and complex assemblies with sym'-etrical

construct'on, it is advisable to make use of the advantages of

symmetrical construction no matter which method is used. For this

purpose, each unsymmetrical load is separated into symmetrical

and antisymmetrical and the frame is calculated for each load

separately.
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Problems

Bending of Single-Span Beams

I. Fiid the elastic line of a knife-edge beam (cantilevcr),

the left end of which (x=O) is elastically fastened (pliability

coefficier. %) to a rigid support and the right end of which

(x=-Z) is completely free. The intensity of the load on the beam

2. Find the elastic line of a knife-edge bcam, the left end

of which (x=O) is elastically fastened (pliability coefficient U)
and the right (x=Z) - resting freely on a rigid support. The

load intensity q - const.

Fig. 1.

3. Determine the elastic line of a knife-edge bea:. in the

section x=O which is supported by a hinge on an elastiL support

with a pliability coefficient A, and in section x=). - rigidly

fastened. The load intensity q = const.

4. Determine the support moments as well as the elastic line

of a knife-edge beam which is fastened elastically at the ends

(pliability coefficient UL) and stressed in the midile of the span

by force P.

%14 The moment of inertia of the cross-sectional area of knife-edge
single-span beams is taken as equal to I in all the problem,:.
The origin of the coordinates is taKer at the left end of the bc,•.
for single-span bea:ns; the span length 4s taken as equal to 1.
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5. Determine the values of the pliability coefficient of

elastic fixing 1ZI at which the greatest bending moment in the span

of a knife-edge beam which is freely supported at one end and
elastically fastened at the ather and which is uniformly loaded

with a distributed load of intensity q will be equal in absolute

value to the bending moment in the fastening. Calculate the greatest

bending moment in the span.

6. Determine the support bending moments aa well as the

greatest sagging of a beam which is fixed elastically at the ends,

the middle portion of which, with length 1,, is absolutely rigid

(Fig. 1). a is the length of the end sections of the beam. The

pliability coefficient of the elastic fastening of the beam's

ends is i. The intensity of the load acting on the middle part

of the beam is qo and that on the end portions - q.

7. Given the equation for the bending moment of a freely

supported knife-edge bean, which is loaded with concentrated force

P in section x-c:

• ~ ~ ii z.- -7]. "

Determine the equation of the bending moment for the same beam,
but stressed in section x=c with concentrated moment a* , usirg

the superposition method.

8. Knowing the expression for the angles of rotation of a

freelj supported knife-edge beam loaded with concentrated force

P in section x=c

Pi (E1 0 - 1 .0 +

determine the expression for the angles of rotation of the same

beam, but uniformly loaded with distributed load of intensity q,

by the superposition method.
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9. Using the superposition method, determine the elastic line

of a freely supported knife-edge beam which is under the action of

a load which varies according to the law q W- .t.o, if the elastic
line of the same beam loaded with concentrated force P applied to

section x-c is known:

S ,'. P . I -- * x (I (i- , 1

ITP I o r-

10. Determine the elastic line of a cantilever with a staggered

cross section which is loaded on the free end with concentrated

S) /force P and the moments of inertia on the cross-sectional area of

the separate sectionr of the beam are I, and 12 (Fig. 2).

1, ,

Fig. 2. Fig. 3.

11*. Using the initial parameters method, determine the elas-
tic line from bending of the knife-edge beam shown in Fig. 3. The

intensity of the evenly distributed load iE q.

12. Construct the bending moment and shear diagrams of a

beam with a staggered cross section which is evenly loaded by
a distributed load of intensity q (Fig. 4).

Fig. 4. Fig. 5.



13. Determine the ratio of lengths of sections of a knife-

edge beam (I1/4.) at which: a) the bending moment in the

crcss sections above the supports is equal to the mrment in the
middle secti-mn of the beam; b) the bending indicators of the ends

of the cantilev•r are equal to zero (Fig. 5).

14. Establtsh the values of the support pair coefficients
a. and me for the support sections of a beam which is fastened

elastically at the ends and which is stressed with a load which
varies according to the law q*-q* (Fig. 6).

Sq f

Fig. 6. Fig. 7.

15. Determine the bending moments in the support sections of
an elastically fixed beam which is loaded with a uniformly distri-

buted load of intensity q (Fig. 7).

i6. Using the solution to problem 15, determine the bencing

moments in the fastenings and in the middle support for the beams
shown in Fig. 8.

Fig. 8. Fig. 9.

10



17. For a knife-edge beam, one end of which (x-O) is rigidly
fastened and the other (x=j), freely supported on a rigid support,
determine the cross section in which concentrated moment U9 should
be applied so that the sagging of this section is equal to zero.

18. Two beams which are rigidly fixed at the ends are con- 5
nected to each other by an incompressible spacer (Fig. 9) which is
fastened to them by a hinge. At what ratio of the moments of iner- -
tia of these beams (I,/I) does the stressed beams' support moment j
decreases two times relative to the moment without the spacer?

19. Solve problem 18 with the assumption that the beams are
Joined by two incompressible spacers which are fastened by hinges
and'placed at distance 1/3 from the support and from each other.

20*. Compose the differential equatic¢n of bending for a syste::^
of two identical beams (Fig. 10) which are Joined by incompressible
spacers which work during bending. There are a rather large number
of spacers. Also find the equation for the elas+ic line of the f
beams when they are resting freely on rigid supports.

21. Disregarding the effect of sagging on the change in
support forces, determine the greatest sagging for two cases of
stress for a floating knife-edge beam: 1) the beam is stressed in
the middle of its length by concentrated force P; 2) concentrated
forces P/2 are applied at the end sections of the beam.

22. Find the expression for the elastic line of a freely

resting knife-edge beam loaded in cross section c by concentrated
force P with consideration of the effect of shear strain. The
area of the wall cross section is w

23. A freely resting knife-edge beam with wall cross-sectionral
area u is stressed as shown in Fig. i1. Determine the elastic
line or this beam with consideration of shear.

11
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Fig. 10.

• " • .. k-•.,..,..,.-,•,- " -'-•!tt ttt tit ltltf

Fig. 1L,. Fig. 12.

24. Find the elastic line and bending moment in any cross
section of the knife-edge beam shown in Fig. 12, with consideration
of the effect of tangential stress on its bending. The cross-
sectional area of the beam's wall is equal to u. The pliability
coefficient of the elastic support is A.

25. FirI the equation of the elastic line of a rigidly fas-
tened knife-edge beam which is loaded with a uniformly distributed
load of intensity q with consideration of shear. Take 0,04P.

Find the ratio of the beam's sagging in the middle of its length
with consideration of shear and without conEideration of shear.

26. Determine the sagging in the middle of the length of a
knife-edge beam which is elastically fixed on rigid supports due

to shear and bending for two load situations: 1) a uniformly
distributed load of intensity q; 2) concentrated force P, applied
in the middle of the beam's length. The coefficient of the support
pair of the fastening of the beam's end sections is .

12



27. Determine the reaction R of the interaction of two inter- J
secting beams (Fig. I-') with consideration of sagging due to shear.

"F I. . 14.

28. Determine the support bending moments with consideration
of shear strain for three cases of bending of knife-edge beams J

(cross-sectional area of walls is w ): 1) one end of the beam is
resting freely and the other is rigidly fixed; bending moment U.

is applied to the freely supported end; 2) the beam is rigidly

fixed at the ends anu is stressed with a load which changes accor-
ding to the law #(x) x ; the origin of the coordinates is taken

in the support cross section of the beam; 3) the beam is rigidly

fastened at the ends; one of the support sections received dis- I
placement f.

29. Determine the maximum sagging of a rigidly fixed knife-

edge beam (Fig. 14) which is stressed with a distributed load which
2l(-c--)"- with1 consideration* ~ vnrips Recording to the law q--T\ (e(4. wt osdrto

of shear strain.

Bending of Continuous Beams

30. Determine the pl.ability coefficients of the elastic

supports of the beam at points C and D (Fig. 15).

13



31.Determine the pliability coefficients of elastically

fixed beam AB, shown in Fig. 16.

ZI

~ A

Fig. 15. Fig. 16.

32. Determine the bending moment in the support cross sections
and in the middle of a two-span beam which is fastened symmetrically
at the ends, Is loaded by a uniformly distributed load and rests on
an elastic support placed in the middle of the beam's length (Fig.j

17).

TAA

it~~ig 18.~~~TIT
Fi.17. Fg 8

33. Determine the ratio between~ the intensity of loads q
and q2at which the angle of rotation at the middle support of a
knife-edge beam (Fig. 18) will be equal to zero; Isflj-1.26.

14



34. Determine the vertical displacement of hinge G as well as j
the settling of elastic support F of a multi-span knife-edge beam

(Fig. 19). The pliability coefficient of the elastic support
A-13/48EI. Construct the bending moment and shear diagrams.

i . i 1 .:t "44"4 "

Fig. 19.

35. A bridge is resting on three pontoons. Find the depen-
dence between the moment of inertia of the bridge I=const and the
water line areas F. and F2 of the pontoon if the settling'of the
pontoons f are related by dependence - under the

effect of concentrated force P (Fig. 20). The specific gravity
of water is - .

• i
IPI

F. , f F,,fj 1 oJI

Fig. 20.

36. A continuous knife-edge beam which is resting on a
rigid shore support and on the edge of an absolutely rigid weight-
less straight-walled pontoon is loaded according to Fig. 21. Find
the bending moment in the beam at x=2Z. The pontoon is joined toEr
the beam by hinges. Let the length of the pontoon LowEl where
I is the specific gravity of water, b=Z is the pontoon'c width.

15



37. Determine the value of the pliability coefficient A of

the elastic supports of a knife-edge beam (Fig. 22) at which the

, "I calculated value of the bending moment will be equal to "

rI

L•- •38*. Construct the bending moment and shear diagrams for a

continuous beam with a constant cross section (Fig. 23).

cosan auewt th diesoaiyothemmn fieta

7 XA. 4A.

bFigan 25. C c tg3* Cosrcthbednmoetand shear diagrams. nFg 4te ocnrtdforc a=..7q

cot 0. Discover the static uncertainty f the continuous

and shear dagrams. In Fig. 23.h ocntae oceP017

shown in Fig. 26. Given: P = 26, 4, - I-df; P, ,qi; ; ,q;1 , wher Ie 14i ;

be,-a4m; 1. In Find the vagues of the support bending moments,

16



the moments in the middle of the span and the shear forces at the
ends of the separate spans of the beam.

4t

Fig. 24. Fig. 25.

ZII
Fig. 26.

Construct the bending moment and shear diagrams.

41. Construct the bending moment and shear diagrams for the
continuous beam shown in Fig. 27.

"" ls

Fig. 27.

17



Given: Pm- 2q Qt*- I,51 Qsu.291; It 1 - Aol 'Io 1; to g Ism =4 .l- ,;

42. Determine the bending moments in the support cross

sections and the settling of thie elastic support of the continuous

beam shown in Fig. 28 t - 1W,1 A I- 410461..

43. Determine the angle of rotation of the cross section of

the continuous beam shown in Fig. 29, stressed by moment U-s

,::Fig 28. ; ol "•,

I '-S

•7 " *'"

141

Fig. 29.

44. Determine the bending moments M and 1I4 at x=1/2 in the

knife-edge beams shown in Fig. 30. Th,' spacer is considered to be

of inertia of the cross-sectional area of the beams are 10 and I.

"inoprsilead sJindt theeam by hns. Thmmet

Fig. 30. Fig. 31.
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45. For a two-span knife-edge beam (Fig. 31) it is necescary

to determine the position of force P which acts in span SC at which

* the bending moment in section x=1/3 has the greatest value.

46. Determine the ratio Latween lines 11and 22of a knife-

*edge beam (Fig. 32) at which the sagging at point 4' returns to

zero,

Fig. 32.

47. By how much must the middle support of a knife-edge beam.

(Fig. 33) be lowered so that the bending mnoment in the section

above this support vanishes?

t

Fig. 33.

t a 48. Find the support moments In a rirgidly fixed beam with

astaggered cross section (1Fi-. 34).

pig. 34.

19



149. Determine the value of a cpan of a continuous knife-edge
beam (Fig. 35) at 'which the angle of rotation of the right support
section under the action of concentrated moment M 'will somprise
0.9 the angle of' rotation of this section when the left section of
the beam is abser4-.

IA

tbe riddle of the stressed span of the !mife-edge beam shown in

toFig. 38.

in he Fig.l 37. thFpnbya ls ic upr. 3 eerie.h

52.chothe trreattst bending m oment dithsagra ofo the beim beomes

beamtion Fhic. 9.coincides it the ide support stucur a)T toe beamal

of astreutedly 'w ri in shFtg. Jo7e by the emi tesdacringes

to Fig. 20



i !r

Fig. 39.

53. A bridge is built across a channel in the form of a

continuous knife-edge beam which rests on rigid shore supports and

the edge of a straight-walled absolutely rigid weightless pontoon.

The pontoon is joined to the beam by hinges (Fig. 40). Construct
the bending moment diagram for the beam. The pontoon length is L.=

WWI$ , where - is the specific gravity of water.

Fig. 40.

54. Determine the mean value of the support pair coefficientt

for the middle span of a continuous beam (Fig. 41) with the conrJi-

tion that the moments of inertia of the cross-soctional areas of

the beams in the adjoining spans are related like the lengths of the

same spans, i. e., , "

55. Determine the support bending moments of a continuous beam

(Fig. 42), assuming that the moments of incrtia of the cross-sec-

tional areas of the beams in the adjoining spans are related like

1 The mean value of the support pair coefficient is equal to the
ratio of the half-sum of the support moments to the mom..t of te.
rigia fastening.

21i



the lengths of these spans, i. e., Also compute
the mean value of the support pair coefficient for the middle span J
bf the beam.

I

Fig. 41. Fig. 42.

56. Discover the static uncertainty and construct the bending
moment aiagram for a continuous beam with a hinge in the middle
span. The beam is stressed with concentrated force P which is
applied to the hinge (Fig. 43). The ends of the beam are fixed
elasticas y (the pliability coefficient of the fastening IL•in).

a

-_ kta

Fig. 43. Fig. 44.

57. Determine the pliability coefficient of an elastic
support arranged in the middle of a freely resting uniformly loaded

knife-edge beam of length 22 with the condition that the greatest
bending moment in the sections will be four times smaller than in
the absence of an intermediate support, i. e., equal to ql.8-

58. When installiig a shaft line, the axes of two of its
sections were separated by the value f (Fig. 44). Determine the
reactive forces which will be transmitted to supports 2 and 3 when
the sections are drawn tomether at flange A.

22



59. Determine the separation f of the axes of two sections

of shaft line (Fig. 44) from the condition that when these sections

are drawn together at flange A, the reaction on support I will be
equal to zero. Tare the weight of each section of the shaft equal

to P.

Designing Assemblies Made of Straight Shafts

I
60. Find the relative value of counterpressure q*/q on the

bottom branch of a frame ring (floor) at which the bending moment
in the lower end of the ring will become equal to the moment for

the rigid fastening of this end (Fig. 45). Gi.ven: I.A is.

A - it -._
S• . , . ... !

Fig. 45. Fig. o6. 4

61. Determine the support pair coefficient for the floor of

a frame .-ssembly (Fig. 46). The ring frame on the upper deck is

considered to be resting freely. The moments of inertia of the
cross-sectional area of the ring and the floor are equal to i ant

I, respectively.

62. Determine the horizontal displacement of the end cf shaft

AB, which is rigidly Joined at a right angle to shaft BC, if hori-

zontal force T is applied at point A (Fig. 47). Consider only

the bending strain of the shafts.

63. Calculate a si!.ple frame consisting of straight knife-

edge shafts (Fig. 48). The shafts of the assembly are Joinel by

23
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-• --. ..•;- - r *rSu-r-'- ,.

hinger at joints 2 and 2', while Joints 3 and 4 are immobile. Con-

struct the bending moment diagrams.

r A ". 4 '*,' ., .

Fig. 47. Fig. 48.

64. Considering that the shafts of the frame at Joints 2

and 2' are rigidly connected and Joints 3 and 4 are immobile,

calculate the assembly shown in Fig. 48.

65*. Determine the bending moments and longitudinal forces

in the shafts of the cantilever assembly (Fig. 49) stressed at the

end of the cantilever by vertical force P. Consider the dilitatio-

". nal-compressive strain and bending strain of the shafts. The

cross-sectional area of the shafts is equal to F, whereupon I=O.5F2

c;=30° and F=2"10-312

A i

Fig. 49. Fig. 50.

66. BInd the dependence between the moment of inertia, the

length of the beam span supporting the upper shaft of the asce:.bly

(Fig. 50) and the bending moment originating at Joint I of this frar:e.

24



67. Determine the bending moments in the joi ts and the fixing

of simple frames with mobile Joints 2 #And 3 (Figures 51 and 52)
with the following data: for the assemblies in Fig. 51, I-.8

219 to t. for the assemblies in Fig. 52, I.lg b'.-

Fig. 5:1. Fig. 52.

68. Determine the bending moments in the Joints and construct

the bending moment and shear diagrams in the shafts of simple

frames with immobile joints (Figures 53 and 54) with the following i
data: for the frames in Fig. 53, At, 5.,..--I.
for the frames in F.&. 54, Ia.44IsiI.fI;..

:, 1II1III11rliii,

Fig. 53. Fig. 511.

I - 69. Determi'1ne the moments in the Joints of a simple frame
with immobile Joints and a pillar in the ccnterplane (Fig. 55) and

construct the bending moment and shear diagrams in the shafts of
the frame with the following data:. -T I; I,-5I.; I,-I-.sI.

70. Determine the bending moments in the joints of complex
assernb1Aes with immob~le J!oints (Fig. 56, 57, 58 and 59) and con-
struct the bending moment diagrams in tnc shafts with the following

25
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data: a) for the assemblies-in Fig. -56,Ianh1m4ru.
b) f or the assemblies In Fig. 57o le- Vs. It- o. Is 4 4-3Jto It-I. ;ina O

c) for the assemblies in Fig. 58,Iin.IgIIa3.IngIine
kor the assemblies in Fig. 59, 4"5.ImsI,4ng s.A~s.e

Fig. 55.1 ]
'a 'L 1

Fig. 5 6.

4 1 j4 itm

Ir

Fig. 57.
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1 4
I "i .i _ _I$
r 4

Fig. 58. Fig. 59.

I I Il~l I ill 1111 1fill I m ni iin

006!h. 32Is I
Fig. 60.

71. Determine the bending moments in the Joints and fixings
of a frame with mobile Joints (Fig. 60) with the following daca:

I ,l,; Is -. 551; Is - 31s. The shafts at Joints 1, i,, 2 and 2' are
rigidly fixed; Joints 3, 3', 4 and 4' are mobile.

72. Calculate the girderless frame with rigid floors (3-4-
-6-5 and 5'-6'4'-03') shown in Fig. 61 at Ii=21O; 12=IO. The

-hafts at Joints 1, It, 2 and 2' are rigidly fixed.

_ _ " l . = L

j I it if 5•', f fit -

Fig. 61.

27
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73. Determine the moments in the Joints of a complex assembly

(Fig. 62) with the following data: Q.-O,5I; .Q•-.Qu-'1; .1•-. Ig'I•-SI,

I__I_&HE

-i 
4" " " " '1

Fig. 62.
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CHAPTER II.

CALCULATING BEAMS ON AN EIASTIC BASE

Brief Theoretical Information

The differential equation for the bending of a beam with a

constant cross section which lies on a solid elastic base with
constant rigidity has the form

'El,.Y (x) + ko'x -- (x). (2

The common integral of this equation is made up of the common i
solution to the ho.iogeneous equation correspond Ing to it [at j
q(x)=O] and the partial solution, depending on the form of the

right side. The common integral of the homogeneous equation can

be written in one of the following forms:

- -,-(B, os x+ s.,.-x) +,=(Bs, s x+ .a' .; (2.2)
• .St . sh cgx + Cg shax s?,ax + Cschaxsid ax +

+ Cs ch ax Cos ax;* """ (2.3)

•W D Vs-Do. (c) + D1V,, (rx) + DVs (60) + Dv (); (2.4)

"WME.1,W. (ax) + ElW(ax) + EW [a (I-- x)( +
, + Esil/ [a (I - x); . (2.5)

n ,j;g ,.h; n - O, 1, 2, 3; 0., 1, 2, 3;

- ..-0, 12.3; h ,2t 1,92 3.
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where B. , Bi. Cj. DO, E are arbitrary integration constants

"determined from the boundary conditions; V8*(e•x) are 'the J

Puzyrevskiy functions;, W1 (=) are the Klishevich functions.

"The values of functions V,(34) an- Wiex) are given in

[3, Table I] and their properties are given in detail in f15 (I].

If the load intensity q(x) is a polynomial of iio higher than

the third power, the partial solution .wP is written in the form

P h - (2.6)

When a beam is stressed by concentrated forces, moments or

a distributed load which has a different law of change in different

sections along the beam, the integral of differential equation (2.1)

can be obtained by means of the initial parameters method. In

particular, the elastic line for the beams shown in Fig. 63 is

written in the form

w (x).= DV,(aI + D1VI (c)D)',VI (a) + DsV, (ax) +

_6 ~ " C9 2 V-2asEI I

+ol+ IiiM-Ii V,(Cxcifj

V, .c ( C.a),

Via (- Ca)) ,~(2.7)

,..here m Is the an~ular coefficient for a load which varies acccr-

ding to the triangle law.

The Puzyrevskiy function,- rapidly increase with tha increa:e

in thc arzi~ent ax; therefore, vwhen thoy are used for numerical

computationz it is nece!ssary to subtract the cmall difference of

the close values. The Klishevich functions do not have this

defect.
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The integral of the homoge-
neous equation for infinitely long
beams should be taken in form (2.2),

it since the condition of the bounded-
-- 7- - ness of sagging' at ,---- is satis-

"_t•. -fied when constants B and B are
Fig. 63. equated to zero. The two remaining

constants are determined from the

conditions at x-O.

In beams which lie on a solid elastic base with co: start

rigidity whose support sections are fastened identically and in

which the load acting on the beam is symmetrical relative to the

middle of its length, the relationship between the support pair

coefficient X and the pliability coefficient of elastic fixing4"

does not depend on the nature of the change in the load and is

determined by the formula

.*. 2%,, 21, E1 . (2.8)

where (•,(); '.(u)- are the Bubnov functions for a freely resting

beam which lies on an elastic base and which is stressed by

a support moment (see appendix VI). The bending elements of the

beams are linear functions of the support pair coefficient.

In particular, the solution of the problem of bending of a

-" round cylindrical shell which is stressed by uniformly distributei

pressure q is reduced to the integration of differential equation

(2.1:. The differential equation which determines the radial

displacement of points of the middle surface of this shell has the

form

"D I" (A) -(2.9)

where D is the cylindrical rigidity; w(x) is the
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displacement of the points of the shell in the direction of its

radius R (positive toward the center of curvature); h is the thick-4

ness of the shell.

The integral of the homogeneous equatincw which corresponds to
equation (2.9) is written in one of the forms previously indicated

[(2.2), (2.3), (2.4)], whereupon parameter a is determined from
the formula

(2.10)

A ship which is floating on calm water is a supportless beam

which is acted upon by the force of gravity and lifting forces.

The sagging of this ship as an elastic beam is determined from the

differential equ-tion in the form
t

IE/(x W W,(W " + k W, W Wx W* ' x•(2.11)

where k (x)= vb (x); q'V) q,) - yF(x); q. (x) is the intensity of the

weight load In cross section x along the ship; F(x) is the loaded

area of the ring in section x of an absolutely rigid ship differen-

tiated on calm water; V is the specific gravity of water; b(x) is

the width of the water line; w(x) is the sagging of the ship aS

an elastic beam. Equation (2.11) describes the bending of a

nonprismatic beam whicl. lies on a solid elastic base of variable

rigidity under the effect of longitudinal distributed force of
intensity q(x). [Certain of the methods of solving differential

equation (2.11) will be given in Chapter IV.]

The differential equation for the bending of a knife-cdge

beam which lies on a solid base can be written in the form

ElEllv (x) E- k W

with consideration of vhcar -;train, where wi (x) is the sagging cf

the beam from bending and Gw is the beam's rigidity to chear.
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Equation (2.12) is analogous to the differential equation
for the complex bending of beams which lie on a solid elastic

base under the action of tensile force T--aW. If the beam
is stressed by a symmetrical load and its support sections are
fabtened elastically onto rigid supports (pliability coefficienc

%L), the boundary conditions have the form at zs.•T,

-7 -=tLE Iwo.- .W 1 -•-."w .-- • -v (2.13)

) where M., is the value of the bending moment in the support section.

In order to use the available solutions on the complex bending

of beams on an elastic base to determine the bending elements of

these beams, differential equation (2.12) and boundary conditions

(2.13) must be transformed. We will introduce a new function v(x)

which is related to the elastic line from u---ding w1 (x) by dependence

S(() 2.1)

Then differential equation (2.12) and boundary conditions

(2.13) will assume the form, respecti "v,

E " ,...;(2.15)

at x- ;t-1

With boundary conditions (p.16), equation (2.15) describes the

complex bending of an elastically fasterneu beam which lUes on an
elan3tic baec. Profeassor H1. V. 14attc obtained simple formulae for

certain of these beamE to determine the nharactcristic bcndini,

element::. The nui.erical valucs of the functions in these formulae

are given in the handbook (2ivertzev, I. N., Davydov V. V., !.:attez
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N. V. Stlidents' Manual on the Strength of Vessels with Internal
Floating. M., 1950) depending on the arguments u and v, which are

found from the formulae:

2 7
The ecessary functions for beams which are stressed by a

uniformiy distributed load are given in the tables in appendix VII.

Problems

Using the Differential Equation for Bending of Beams on an
Elastic Base

74. Find the sagging and angle of rotation at the origin of

the coordinates of a semi-infinite knife-edge beam which lies on

a solid elastic base with rigidity k and which is stressed by

concentrated force P. At the origin of the coordinates, the beam

is resting on an elastic support with a pliability coefficient

A i (Fig. 64).

, e Cut .

B.. ,.. . "' i-

Fig. 64. Fig. 65.

75. Find the sagging and angle of rotation at the crigin o

the coordinates of a semi-infinite knife-edge beam which lies on

a solid elastic base with rigidity k and u:hich is loaded by a

concentrated moment. The beam is fixed elastically at tle origin
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of the coordinates (the pliability coefficient of the elastic

fixing W) (Fig. 65).

76. Find the elastic line and the maximum sagging index of

an infinite beam which lies on a solid elastic base with rigidity

k and which is loaded by force P. At the origin of the coordinates,

the beam is resting on an elastic support (the pliability coefficient

i7' " * ) (Fig. 66).

• Fig. 66. Fig. 67.

oftecoordinates, lying on an elsstic base and stressed bya

uniformly distributed load with intensity q (Fig. 67). .

. Determine the values of the characteristic bending

e for the knife-edge beams shown in Fig. 68: sagging,
anl ofrttin omn n shear in. the support ctctionis and

in he idde. he igiityofthe elastic bare

I
7L. Find the east lin g rean infinitsupport moie-

edg fa eiiniie beam whichi liso o id rigdl y bas e d ath th rigidtk n !

whiche isooadedinate selyin on xhan length Zase an unifressdly di*

unfrl itributed load oft intensity q.(i.6)

80. Determine the galue of beec.ithe endractiticn: ofending -

iinnithe mnidde The beamgidiy the elastic support the suppor

reatio being tequalatoes (t sggin 69). nfntlyln ie

ede ea wlc lesona oldelstc as wthriidty35n



a) " " " "~b) .. "
j Il

F ..

c) .:

-7-

9- - ;- t - - - -..

b ).. . " ' .

7 '

Fig. 68. ~ --

": L '" ,l :'":' ':_~~~..'"" i• :... * .'.." ' - . "

*~1 Aa-4

F . .. . .F.i. 7 .

81. Determine the support bendin .om.ents and sagging in

the midJie of the length of a fixed beaizi which lies on a solid

elastic base w.."ith rigidity k. The " f id"le portion of the beam is

absolutely rigid (Fig. 70).

5 36
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82. Find the equation for the elastic line of a flexible
straight-walled knife-edge pontoon floating on water which is loaded
in the middle section with concentrated force P (Fig. 71). Compute
the bending moment acting in the section under the force also.
The pontoon's weight is evenly distributed along its length I , the
moment of inertia of the cross-sectional area of the pontoon is I
and the pontoonts width is B.

Fig. 71.

83. Find the fibrous bending stresses in an infinitely long

round cylindrical shell with radius R and thickness h which is
stressed by a uniformly distributed lateral load of intensity q
and which is supported in the middle on an undeformable diaphragm.
Determine the distance a to the section of the shell which is
closest to the diaphragm in which the bending stress vanishes.

The origin of the coordinates is considered to be in the cross
section which coincides with the diaphragm.

84. A round infinitely long cylindrical shell with thickness

h and radius R is stressed on the perimeter of the middle section
by a load of intensity q. Determine the equivalent area F of

a circular ring loaded with a load of intensity q which receives
the same pressure as the shell in the ;ection ader the load.

85. Determine the support pair coefficient for the middle span

of the continuous beam shown in Fig. 72.
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-." T ,X Fig. 72.

86. Solve problem 85 with the assumption that support sec-
tions I and 4 are rigidly fixed.

87. An infinitely long beam on a solid elastic base is
stressed by a uniformly distributed load with intensity q. A

) rigid support is installed in a certain section. Determine the
reaction of this support and the bending moment in the cross sec-

tion above the support.

"88*. A knife-edge beam which lies on a solid elastic base

is loaded on the ends by two concentrated forces Q/2 (Fig. 73).

Considering that the angles of rotation of the end sections are
equal to zero, find the bending moments and the reaction of the
elastic base in the middle and in the end sections. (This solution
can be used to check the strength of the keel when docking ships.)

I

j _X

fe

_ / Liz . _ - L • ' .

Fig. 73. Fig. 74.

89. Determine the rotational angles of the support sections
of a freely resting knife-udgc beam which is ling on a ,:olid
elastic base with rigidity k when the support deviates by value

fo0 and f I(Fiu. 74).
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90. A knife-edge beam with length 2 and weight per unit length

p lies on a solid elastic base with rigidity k (Fig. 75). The left

end of the beam is lifted by force Pnhpl, where %1i. Compose the

iluation for determining length a by which the beam is torn away

from the base, considering that the elastic base does not receive

tensile forces at this length.

- f Fi.A 75. *Fig . 7.3

9l** Find the equation for the curve of f(x) (Fig. 76) by

which an elastic base with rigidity k-const should be described

in order to provide the given bending moment diagram for a beam

which lies on this base and which is stressed by a load of inten-

sity q(x) (the broken line shows the beam's axis in the undeformed
state).

92. Find the bending moments U.s for a freely resting

knife-edge beam of length Z which lies on an elastic base with

rigidity k which must be applied to the end sections so that these

sections obtain identical positive angles of rotation a0. (The

moments act in the same direction.)

93. Which forces Q/2 must be applied to the ends of a knife-

edge beam (the section's moment of inertia is I) which l.es freely

on an elastic base so that these ends receive the given sagging f?

94. Find the change in sagging in the middle of the span, as

well as the change in the angle of rotation of the end sections of
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a freely resting knife-edge beam lying on an elastic base with

rigidity k and stressed by uniformly distributed load q after the
installation of an elastic support with a pliability coefficient

A in the middle of the span.

95*. Using the initial parameters method, write out the

elastic line of a cantilever knife-edge beam (the moment of inertia
of the cross-sectional area is I) which lies partially on • elas-
tic base with rigidity k and which is loaded by force P (Fig. 77).

.. ~~o 1 "|."--

Fig. 77. Fig. 78.

96*. Compose the differential equation for the bending and
boundary conditions for a system of two knife-edge beams Joined

)by an elastic base of rigidity k and stressed by an equilibrium
load, end moments and forces (Fig. 78). The solution to this
equation can be used to determine the reaction of keel blocks when

mooring ships in a floating dock.

97*. Determine the sagging and bending moment in the middle
of a span in the first of two knife-edge beams which are joined

by an elastic base with rigidity k=const (Fig. 79).

98. A supportless knife-edge beam of length I which lies on
a solid elastic base is stressed by a uniformly distributed lca.d

q. What identical moments g,. must be applied to the end sectionz
of the beam so that the intensity of the reaction of the elastic
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base in the middle of the span of the team turns out to be equal

to zero? What will the intensity of t.he elastic base's reaction r

be in this case at the ends of the beam (Fig. 80)?

.. 1.

(x2 of whc is copetl fre une' feto nfrl

i, ' - .£- ,' ' ;

distribu •ted• loa o,,, inest q an cocnrted moen I fon

the. beam appie in seto ..x ,,.--.. (Fg-8)

Fig. 79. Fig. 80.

S99. Determine the moment in the elastic fastening of a knife-
edge beam lying on an elastic base, one end (x=O) of which is

Sfastened elastically (pliability coefficiet is th) and the other
S • i(x=2) of w~hich is completely free, under the effect of a uniformly

distributed load of intensity q and concentrated moment 3. on

the beam, applied in section x=t (Fig. 81).

Fig. 81.

100, Determine the angles of rotation of the support sections

and the sagging in the middle of the length of a freely resting

* knlfe-edge bcam which lies on a solid elastic base with rigidity

k with consideration of shear strain and with the asuzption that

the support sections of the beam received displacement f' (Fig. 82).

The rigidity of the beani to shear is Gw.
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Fig. 82.

101. With con!ideration of shear deformation, determine the

k bending momesits in the support sections and in the middle of the
span of a rigidly fixed knife-edge beam which lies on an elastic
base and 'which is stressed in the middle of the span by concentrated
force P. The beam's l(ngth is S , the moment or inertia of the
cross-sectional area is I and the wall area is

102. A knife-edge beam with moment of inertia of the cross-

sectional area I and length Z which lies on a solid elastic base
with rigidity k and which is loaded by a uniformly distributed

load with intensity q has the following arrangement of support
sections: a) a beam which rests freely on rigid supports; b) a

beam which is rigidly fastened onto elastic supports whose plia-
bility coefficient is A. Determine the bending moments, the shear

forces, the angles of rotation and sagging in the support sections
and in the middle of this beau. with consideration of shear strain.

The wall cross-sectional are a is w.

103. A rigidly fixed continuous knife-edge beam which is

supported in the span by five equidistant elastic supports with

identical rigidity (K4=const) and which are stressed in the sup-

port setions: by concentrated forces P (Fig. 83) is replaced by
Ka beam which lies on a solid elastic base with rigidity kwhse.4 and

which is loaded by a uniformly distributed load of intensity

Pfrn

andi h ideo hsba ihcnieaino ha tan

The all rosssectonalaresis42



~ Y W -- -- - - - - - - - - ---

i

"<" ',' ". I * I " • I ' 1 " ' - p . : - "

Fig. 83.

The moments of inertiai of the cross-sectional area of the

beam Io--229o.9.1O3 cmii; the pliability of the elastic sI'nports

;4'm 16,32i;-- th the length of the separate span of the beam a:7 m

moment and shear force in the fastening (140, NO), the b~ending

moment (M,) and the sagging in the middle of the span of the indi-

cated beam on an elastic base.

10i4. Solve problem 103 with consideration of shear strain.

The cross-sectional area of the wall w =15.6 cm.

431
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CHLAPTER III.

BENDING OF FLAT COVERINGS

Brief Theoretical Information

Coverings with one cross connection. The assumption that
only the concentrated reactions Ri perpendicular to the plane of
the covering originate in the points of intersection is generally
accepted when designing tops consisting of beams in two directions.
Furthermore, it is accepted that the external distributed load is

taken directly by the beams in the main direction, and the cross

connections are only stressed by the reactions of the interaction

of the beams in the two directions.

Designing coverings with a large number of supports for the
beams in the main directionI with identical rigidity and arrange-

ment a'd one crcs• connection is reduced to calculating the cross

connection as if it were a beam lying on a solid elastic base [see

(2.1)). In this case, the rigidity of the elastic base, the inten-

sity of the load and the argument u are determined by the formulae:

___

a"4 ' -. (3.1)3/

3.

1It in poscible in practice to consider the number of beams ir. the
main direction to be large if there are more than 4-5 of them.
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where L is the length of the covering (the span of the cross

connection); : is the width of the covering (the span of the beams

in the main direction); a is the distance between the beams in the
main direction; I is the moment of inertia of the cross-sectional

area of the cross connection; i 0 is the moment of inertia of the
cross-seCtional area of the beams in the main direction; x is
the coordinate read along the cross connection; Q(x) is the load

on the beam in the main direction which is located at distance x

from the origin of the coordinates; 7 is th- coefficient of the

effect of the concentrated force applied to the beam in the main

direction at the point where it intersects the cross connectLon
on sagging at this point; P(x) is the coefficient of the effect
of load Q(x) on sagging of the beam in the main direction in the

place -where it intersects the cross connection. If the load alolig

the top is constant and coefficient O-const, q-const.

In order to design any beam in the main direction, it is

necessary to find the sagging at the point where it intersects
the cross connection. The value of this sagging is found by

calculating the cross connection. When determining sagging, the
reaction of the interaction of the cross connection with the i-th

beam in the main direction is found:

(3.4#)

where wI is the sagging of the i-th beam in the main direction at
the point where it intersects the cross connection, and then the

bending moment and shear diagrams are constructed.

If a covering with one cross connection is stressed by con-

centrated forces, the calculation of the cross connection is
reduced to calculating a beam on a solid elastic base which is
loaded by concentrated forces. If concentrated force P is applied

directly to the beam in the main direction, the cross connection
proves to be stressed in the corresponding section with force
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(3-5)

where • is the coefficient of tte effect of force P on sagging at

the point of the beam in the main direction's intersection with
the cross connection.

The reactions of the cross connection's interaction with the

beams in the main direction, to whi':h the external forcer are

directly applied, are calculated after determining sagging accor-

ding to formula (3.4).

If the rigidity and the fixing conditions of one of the beams

in the main direction are different from the conditions of fixing

and the rigidity of the remaining beams, the calculation ol the

cross connection is reduced to calculating a beam which lies on an.

elastic base and which is fastened at. the point where it intersectz

a variable beam in the main direction by an elastic support with

rigidity

(3.6)

and which is stressed by concentrated force P1 instead vf q(x),

which is determined by formula (3.2):

P1 - Qj (X), (3.7)

where -' is the coefficient of the effect of the concentrated
force applied to the varicble beam in the main direction at the

point of its intersection with the cross connection on ra-ing at

this point; P' is the coefficient of tho effect of the external

load acting on the variable beam in the main directicn on its

sagging at the point of intersection with the cro,. connection;

n=i 1 /io; iI is the moment of inertia of the cross-sectional areŽa

of the variable beam in the main direction.
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Covering with several cross connect -'2 .. :

can be used to calculate coverings wtth L large n,,mber of

in the main direction and several cross connections (Fig. 81.
Below we will consider th3 method of "main bends" and thu :.tthoda
of the "load selection" cf crot7l connectiono..

Method of I-lain Bends. Assuming that the interaction of beams

at joints results only in the same type of rcactioins perpendicular"

to the plane of the covering and considering only boudtng strain

of the beams, the system of differential equations which determine

the static uncertainty can be written in the form

E• M " (3.8)

%here wi 16 th,• sagging of any beam in the nain direct-..., at the •

point of interszr'tion zith the 1-th cross connection; is the

coefficient of the effect of load Q(x) on sagging of the i-th Joint

of a beam in the main direction; 7it is the coefficient of the

effect of the reaction in the J-th cross connection on sagging

or the i-th beam in the main direction; a is the distance between

the beams in the main direction; I is the moment of inertia ol'

the cross sectional area of the J-th cross connection; i-I, ... , n

(n is the number of cross connections)

- W

,ig. 8 4 .
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System of equatlonis (3.8) can be integrated in the following
manner. Let

"W, W) ') (3-.

where "Okis a certain constant value which has the dimensionality

of the moment of inertia; Pi are constant coefficients which

designate the types of main bends; pm (x) are the functions which
satisfy the eqoation for bending of a knife-edge beeam which lies
on a solid elastic base (main bends):

Eop•v (x) +-.kip. (xý ={x) at m.=1, 2 ... n, (3.10)

in whipr the rigidity coefficients of the elastic ba.e km and the

load intensity q, (x) must be determined. The following system 7f

algebraic homogeneous equations should be used to calculate the

types of main bends vim and coefficients km:

V'. + + 0

I *....'.i\I •.1
S . 'M Y + t - "VsI . .+ 0; + " R I

J.Yni•,- +Yn1V', + In , h j-- '•} V,,,, - J

t where -Ef.

System of cquations (3.11) has a solution uhich is different than

zero only when its determinant is equal to zero, i. e., if

" . . . . .... . . . . . .. .- . . .' . . ." . . • .

,P. .. it
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The characteristic numbers x. and, consequently, also the rigidity 12

coefficients of the elastic base

are determined by equations (3.12).

Sincu the types of main bends are determined from equations

(3.11) with ac-uiracy up to an arbitrary multiplier, all vM,

can be considered to be equal to one (Ymm=i) and the remaining

im can be determined from any u-I of the equations in system

(3.11), substituting all the roots Xm to equations (3.12) in

them in turn. The types of the main bends ',m satisfy the follow:ing

condition, called the condition of orthogonality:

S, ., •(3.1.4)
Sv v,, O at inr.

System of equations (3.11) and orthogonality conditions (3.14)

make it possible to determine the Litensity of the load q (x):

fl- v ________,._ . (3.-,;

The roots of the characteristic d':tcrminant (3.12) for a

coverir.,. with two cross connections, as well as for a covering

with three cross connections and bymmetrical load and structure,

are determined from the formula

where

A2 (T 29
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In this case$ the types of main bends are determined by the
formula

I - I I

RI I

Yarn

When the ends of all the cross beams are fixed identically,
the boundary conditions for each of the main bends prove to be
the same as for the sagging of the cross beams in question. If.
the conditions for fixing the support sections are not the same
for different cross connections and have the form

wj -A7E~, tv t L)E1,

tu AfEIjttw; w1  -

where A0 ALi and 1;U L r h pliability coefficients of the
elaticsuportandfasting of the J-th cross connection, the
boudar coditonsinthe main bends are not separated, i. e.,

the main bends will be connected to each other. In this case,
using (3.9), condition (3.18) can be written as follows:

at x=0OVm,,()I

w n-P (0)-A*,~ N*,vj;

at x=L%

p.*h ~r~ (L) Vi C -
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0 N an W.where N m d are the shear forces and bending
moments which correspond to the m-th main bend:

I'. (3.20)
°'" P. ("- g4 r-EQý a

The types of main bends in condition (3.19) and their first I
derivatives at x=O and x=L can always be expressed by the load
which acts on a beam lying on an elastic base and by the value of
the shear forces and bending moments in the support sections.

In particular, these dependences for a beam which is uniformly
stressed by load q and symmetrically fastened at the ends will

be the following

____P ((.21

. 71W=(,.)= .. ,÷

+.L ., (,u.)iS
io + .*-1~ * (0.) a' g.*2(.

where P,(u.), v. (u,, v, (•,)', etc. are I. G. Bubnjv's functions for
beams which lie on an elastic base.

In the case in question, the values of the bending elements
in the middle of the length of the beam which correspono to the
m-th main bend will ')e

64EI-.-4•. =q.-- "t,(,, - . (3.22)
o 0 N L X, (U")

,-mMCP t1m(URI)+-t '4l ,
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where
ve V 6- o(u.)- '4j (u.); (3.23)

(3.24)

The bending elements of the cross connections are determined
from the formulae

• nI

(325
0 4Nix) = EfW,u,)EvE1p x. vl.,(

where p,,•, N, are the bending elements of the beam for the
m-th main bend.

The consideration of shear deformation in the beam walls in
both directions has considerable significance in the calculation
of bottom coverings with a double bottom. This scheme for cal-
culating coverings with consideration of shear strain can only
be used when the ratio of the cross-sectional area of the beamr.
wall w. to the moment of inertia of all the cross-sectional areas

() of this beam for all the cross beams is a constant value at
any i:

-=.const. (3.26)

In thi.s case, the calcultton of the covering is reduced to cal-
culating n (the number of cross connections) knife-edge bttams
which lie on an elastic base with rigidity k. [formula (3.13)]
and which is stre~ssd by distributed load q, [formula (3.15)] ar.n
exIal tensile f•-ce -.-Jk,""

The equation for determining the main bonds in this case is
the following
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E pV ,E A. 1. 2. "n"" (3.27)

, ., ,.,- , , (3.28)

The summary elastic line of the i-th cross connection is

determined by the equation

., (f 1- = ,;S.t,• +. I; (,,". . (3.29)

where wi, (x) is the elast.c...~ne..fxrm bending;w2 i (x)jis the
elastic line from shear, whereupon

t W, .(3.30)
4

" "' ; '•" :''3. 3:1)

The formulae and equations used to determine Am and 'im remain i
the same as in the problem in which shear is not considered.

The coefficients of effect should be calculated in this case with

consideration of shear in the beam walls in the main direction.

As v'e have already indicated, the auxiliary functions put

into tabular form by Professor N. V. Mattes can be used to deter-

mine the design elements of bending of beams on an elastic base

with consideration of shear. If condition (3.29) is not satisfied,

shear can only be calculated approximately when designing coverings.
by the method of main bends. For this purpose, it is necessary to

use the reduced values I of tLe moments of inertia of the cross

connections I., calculated according to formula

," (3.32)

instead of their real values when computing the roots of
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charctersti eqain(.12) th type ______ens 3-

and load intensity, where

The coefficients of effect i and must be computed with

consideration of shear strain in the-beams in the main direction.

The bending elements in the cross connections will be determined

*.(X) mmWU (X) 5g U~i5gLNSm(
so .#P v*

wi W -WE Vt A. ON. ('A

NsW Bw E Va.N.,(W).

where pm (x) are the main bends determined by differential

equation (3.10); p.(x); wt,. (x); N,,,(x), are the angle of rotation,

the bending moment and the shear in the m-th main bend, respec-

Metodof"Load Selection" or Cross Connections. The

calculation of' coverings with several croso connections using the

load selection method is based on the concept of the intensity of

of the load acting on the J-th cross connection, as follows

where q i (x) is the intensity of' the load, calculated with the

assumption of' the undeformability of the cross connections;~(~

is the selected function whose form Is similar to the elastic

iine of the cross connection [i() I];q is the unI'u-xcwn

[If Of 'I'



f.-.

"intensity of the load, whose determination requires the use of
the equatLon for sagging of the Joint cross sections of the bea.'ms
"in both directions. The system of equations which determines

qj will be the following' +f
where L is the length of the cross connection;. I0i is the mean
"value of the moment of inertia of the i-th cross beam; qO is the
mean value of-the load in the i-th cross connection; 7 is the

coefficient of the effect of force R on sagging in the i-th
Joint; ai and are the coefficients of effect on sagging in the

jmiddle of the length of the cross beam under the action of loads
"with intensity qO and qi' respectively.

When calculating bottom coverings with half-partitions in the
diametric plane, it is expedient to take the intensity of the load
acting on the vertical keel in the form

Sr. = qO~N + q,,_ Tq. (,4). (.

Swhere q(1) is a constant coefficient whose determination requires
* using the condition of equating the sagging of the beam in the

main direction at the point where it intersects the Keel in its I
* support section to zero. It is advisable to use the auxiliary

) .functions given in (3, Table I] to simplify the calculations
according to the method of load selection.

Wher Jesigning cross connections using the method of load
* selc :tion, shear deformation can be considered in the following

manner: the beams in the main direction are calculated with consi-
deration of shear; the coofficients c.f effect •iJ; Pi; are
determined with consideration of shoar deformation; shear defor-
mation is considered %:hen determining sagging of cross beams.
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II

Problems

Calculating Rectangular Flat Coverings

105. An edge covering consists of a large number of equi-

distant ribs with a moment of inertia of the cross-sectional area

i and one edge stringer. As Fig. 85 shows, concentrated force P
acts on one of the ribs. Considering that the covering is infinite-
ly long, at what value of the moment of inertia of the cross-see-

tional area of the edge stringer
I will the sagging of a rib stres-

" sed at the point of intersection

with the stringer be n times less

SI,3Lthan the sagging of the rib
without the stringer? The width

Fig. 85. of the covering is I and the
distance between ribs is a.

106. Let concent'rated forces P be applied to m ribs in the
covering eox',ned in problem 105 (Fig. 85). Determine how much
greater tkAý ;asirig of the middle of these stressed beams is than
the sagging !.% a stressed beam when one concentrated force is act-
ing on it. When solving the problem, consider that the concentrated
force P is equivalent to a uniformlydirtributed load of intensity
q P on a section with length a.

107. A covering of length L and width I with one cross
connection and a large number of beams in the main direction,

separated by distance a, is stressed by concentrated force P at
the point where the middle beam in the main direction intersects
the cross connection. The cross connection (moment of inertia of

the cross-sectional area is I) is rigidly fastened at the ends,

while the beams in the main direction (moment of inertia of the
cross-sectional areu is i) are resting freely. Determine the
greatest bending moment in tne middle beam in the main directlo:',

if the cross connection passes through the middle of the width of
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the co• ring.

108. A covering with length L and width 1=0.8L that has one

cross connection and a large number of beams in the main direction,

the distance between which a-O.iL, is stressed according to Fig.

86a, b, c, d and e. The boundary conditions for fixing the cross

connection (the moment of inertia of the cross-sectional area is

I) and the beams in the main direction (the moment of inertia

a) b)

1_ li IT T

c) d)[

-1*

_" .Fig. 86.

of the cross-sectional area i=O.1L) are shown in the same figure.

Determine the bendingr riomentc in the middle bear) in the m~ain Jiroc-

tion m(y) and in the cross connection M'(x) in the support Cectior:

57

¶ UI

°. *.~ . *.. .



and at the point of their intersection, as well as the reaction of

the inte~raction between the cross connection and the middle beam

in the main direction.

109*. A co%'ering with one cross connection and a large number

of beams in the main direction, the distance between which is a,

is loaded by a uniformly distributed load of intensity q. The

beams in the main direction with length t are freely resting at the

ends; the moment of inertia of their cross-sectional areas is equal

to i, except for the middle beam, whose moment of inertia is

equal to mi. The cross connection with length L (the moment of iner-

tia of the cross-sectional area is I) is rigidly fastened at the

k. ends and divides the span of the beams in the main direction in

half. Determine the reaction of the interaction of the c-ross

connection with the middle beam in the main direction.

1O. An evenly stressed covering consists of a large number

of beams in the main direction, the distance between which is a,

and one cross connection. What ratio should there be between the

moment of inertia of the cross-sectional area of the cross connec-

tion and the moment of inertia of the beam in the main direction of

this covering so that the bending moment in the middle beam in the

main direction turns out to be four times smaller in the middle of

its span than in the absence of the cross connection? The cross

connection with length L is rigidly fixed and divides the width of

the covering in half; the beams in the main direction with length

* are resting freely (L: t=I; L: a=10).

111. Establish the dependence

of the bending moment in the sup-

port sections of the beams in the

main direction of a uniformly stres-
sed bottom covering consisting of

knife-edge beamrn (Fig. 87) on the

Fig. 87. changce in the moment of inertia of

the cross connection. The croee
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connection and the beams in the main direction are rigidly fixed.
Only the beams in the main direction are stressed by the external
load. The moment of inertia of the cross-sectional area of the

beams in the main direction is i.

112. Determine the value of the moment of inertia I of the
cross connection in problem III at which the bending moment in
the middle cross section of the beams in the main direction will

be equal to zero.

113. Determine the bending moments in the fastening, in the
middle of the length of the cross connection and in the middle of
the length of the middle beam in the main direction of a coveriig

which consists of ordinary and reinforced beams in the main direc-

tion (Fig. 88) with the following data: .j-I%2; 1",5; I.5; 1 n.3.OR

The load along the cross connection does not vary.

Fig. 88.

114. Determine the bending moments in the cross connection=L
of a covering which is reinforced by a rigid pillar at x=O; x-g;

x=L (Fig. 89). Also find the greatest bending moment in the middle
beam in the main direction. Given -IS.. t; i 3L.. the load

along the cross connection does not vary.

I15. Determine the reaction of the pillar in problem l:

considering its compression, if the cross-sectional area of the

pillar is F and the height of the pillar is HI.
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116. Determine the bending moment in the fastening and in
~the middle of the length of the cros,; connection of a covering

in which oebeam in the main direction is absent at x-O (Fig. 90)

with the following data: L ý ..-- M30. Tela ln h

cross connection does not vary.

Fig. 90.

117. Determine the bending moments in the fastening, the

middle of the length of the cross conncction and thc middle of the

length of the middle beams in the main Oirectic'n of two cov~b-i -s
which are joined by a rigid piller, a-, shown in Fig. 91. The

*load intensity on the lower covering qo=const; -ei1.5; -- 10; Ias
Ii's.U' I;I . £

11i8*. Derive the differential cluptlon for the bending of

the cross connection of the coverins- Lho-in in Fi.,. 92 with the

conditiun that the beam.: In the main direction are accomrp:'!.led Ivy

*torque. The proport-ionality constant betweern the ang-Le c,'t..i,.

of the beams in the main direction and tlhe torque I., equ-il to e;
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Fig. 92.

there are a rather large number of beams in the m~ainA direction.
Obtain the gener) exrsio for the elastic line of a cross

connection in the form of a trigonometric series, considering that

the end sections of the connection are resting freely on rigid

supports.

119*. Calculate a bottom covering which Is uniformly stressed
by a load of Intensity q (Fig. 93). The cross connections, strin-

gers and vertical stabilizer are rigidly fixed, while the beems

in the ,-,ain c1-irection (floorn) are freely oupportel. lMaKe the

calculation usin-g tho :'.ethodJ of mialn bend., without con Aderat io-

of' shear in tihe wallflusn appenJ~x V111) arnd with, cons:idcration

of shear Di t).e -V- ilL.. ~iv~lrt: { 0.8; -ý-0.;. ±--0.25; 08

4__ 0,5; . 0,6; ~1 u0,015.
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120*. Determine the sagging and moments in the support sec-

tions of the cross beams in each of the main bends for a symmetric

uniformly stressod bottom covering with three cross connections,

assuming the keel [vertical stabilizer] to be freely supported and

the stringers rigidly factened to the partitions.

,J•] ,I 4[IT 1-,

"Fig. 93. Fig. 94.

121. Compose the equation for detprrning the sagging and
moments in the support sections for the first and second main benis

in a covering with two different cross connections with the

condition that one of the cross connctions is rigidly fixed and

the other is completely free in the end sections (the load is

evenly distributed).

122. Determine the bending moments and sagging in the end

soct.ons and in the middle of the length of the cross connections
of a symmetric cov :ir% (Fig. 94) which is stressed by an evenly

distributed load for the following cases: a) the vertical stabili-

zer and stringers are rigidly fixed; b) the vertical stabilizer

is completely free at the ends and the stringers are rigidly

fastened; c) the covering nas no verti 1l stabilizer. The floors
are freely supported on rigid supports in all the versions.

Given: -t-= -29; 1.38; =0.25; t.2. l,a T7'; .- ;•

123. Usin,' the main bends :iethod, determine the ben:ling moments

and shear forccs in the support sections and i, the middle of the

span of crooz connections of an edge covering wi.ch is stresced by
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directionless pressure (Fig. 95). The upper ends of the ribs are

freely supported, while the lower ends are rigidly fixed. The

st-ingers are rigidly fixed at the ends. Carry out the calculation

with and without consideration of shear.

Given: 4- 0.6; 38 0;

6 I' I. I *L

Fig. 95.

124. Using the method of main bends, determine the bendi.n.g

moments in the support secJilons and in the middle of the span of

' the cross connections of a uniformly stressed bottom covering with

lengthwise hilf-partitiors in the center-line plare. The basic

dimensions of the covering arc given in Fig. go'. The vertical

stabilizer and the stringer are rigidly fastened; the floors are
freely supported. Given: 1, 1;i e: .11

125. Solve problem 124 usinga the mnethod of tLhe ;'lead selec-

tion" of cross 'connections. The intens•ity of the reaction, of th.e

elastic base Is given in the f ollowingr fox';:

for the stringer
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for the vertical stabilizer

Equate the following points when composing the basic equa-

tions for sagging of cross connections and beams in the main
direction: x1 -5.5a; x2-3a.

|¶

-. U .. . .a

Ha f-partition Half.partition
* - -- --

- ~." I• , .

Fig. 96.

126. Determine the bending moments in the calculated cross

sections of the vertical stabilizer and stringer of the covering
considered in problem 119 with the condition that the covering is
stressed by one concentrated force in the middle of the stabilizer.

Make the calculation using the method cf main bends in two versior.Z:
a) without consideration of sheer; b) with consideration of shear.

127. Determine the sagging (in cm) and bending moments in
the middle of the span and also the bending moments in the support

sections of a vertical stabilizer and a stringer (in t.m) for a

uniformly stressed bottom covering (Fig. 97). The stabilizer and

the stringer are rigidly fastened to the partitionz and the floorz

are resting freely on the edges. Make the calculaticn with and
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-ihu cosdrto ofsersri ymaso-h ehdo

I.2 2
Given: L 22~~~~~~~~~~.1m 161m m76m;b38m;l=0cmn2 21K"
lc=310 ~ ~ U.. M =5c teaeso teba al

2. 2 2 ---

W.=9 c ;d~o cm; he alclaed resur q il128.Sole prble 127by he mtho of loa selctii o

cnidering that =5 m i 2 the aelsreaidl ofiean the beam walls .arek.5c.

elasticall cmsene (the cslulaote par effiuren q (t/2 ).-

:128. Solclvte tloeigi problem 127, bthmeodo"ladsseleciong thf

cros trss cnetion (witou consideratid one Pf shchar). plidt

129. Solvea probnes 12 by aithne "oad=selctifon" mhepathod, ns

conidein Dthatin the connescriidly beixednd the seationges ardte

eliasticllty cofastiened (thfelsi support prcoficinstale atpoints

o 30 Caclt the covering ie.rle n problem 127', assumin g thatte oern

is streszed by a uniform load and the ends of the cross conne:!tio-n:

are rigidly fastened. Use the mrain bendis %method weithout

consideration of shear.
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""" CHAPTER IV.
". GENERAL THEORFMS OF STRUCTURAL MECHANICS

- Brief Theoretical Information

.I. The strain energy of an elastic system (beams) is desig-

nated as the work which must be expended to transform this system

from the undeformed state to the deformed state. In the simplest

strain situations, the strain energy of a beam (generally, a

curvilinear beam) is expressed by the following dependences:

potential energy of bending j
.Vr .2= 1 2 'E'(1'()'ds. (4.1)2 ,. 4

where the integrals are computed along the entire length s of the

shaft's axis;

potential shear strain energy

v. - 'd - I (); (4.2)

potential dilatational-compressive energy

* I Vds&.

potential tw.isting energy
M;Pds" C 2 C I

(4.4)
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where M i is the torque; C is the rigidity of the beam to twisting.

Since the previously considered situations of beam strain

are independent, the beam strain energy is equal to the sum of

the potential energies of the separate types of strain:

or

T Z'. dL" (4.5)&s : 11" i1

9 we will note that the formulae above are only correct for
linearilydeformable systems, i.e., for systems in which the
generalized forces and generalized displacements are related by

linear dependences with constant coefficients. Furthermore, these

formulae can only be used to compute the potential energy of shafts

with little curvature, since the situations of strain in question

cannot be considered to be independent for shafts with large

curvature.

If a beam is rigidly fixed and supported on an elastic support I
or it is on a solid elastic base, the strain energy of the elastic

fastening, the elastic support and the elastic base can be computed
using the following formulae:

the strain energy of an elastic fastening arranged in section

the etrain energy of an elastic support arranged in section

1 The concepts of generalized displacerment and generalized force
are given in the theoretical mechanics course.
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I(4-7)

where R (cl) is the reaction of the elastic support;

the potential strain energy of the elastic base

VM.- (4.8)

where s, is the length of the elastic base.

The following theorems are correct for linearily deformable

systems: the Castigliano theorem, the theorem of the least work

and the theorem of the reciprocity of displacements.

The (Astigliano Theorem. The partial derivative of the

potential energy for a generalized force is equal to the genera-

lized displacement corresponding to this force:

94' (4.9)

where Qk is the generalized force; q is the generalized displace-

ment which corresponds to generalized force Q The g.neralized

displacement will be positive if the generalized force of this

displacement generates positive work.

The Castigliano tnheorem is used to determine the generalized
displacements of static determinable elastic systems. In order

to do this, it is necessaij to write the expression of the

system's potential energy [tg., according to formuia (4.5)] as a

function of the assigned exteinal load and the corresponding
unknown generalized displacements of the generalized forces. If
the load of the elastic system in question does not include a
generalized force which corresponds to the unknown generalized
displacement qp, it is necessary to introduce fictitious force Q*

and to set this force equal to zero after finding the generalized

displacement, i.e.,
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(4.1o0)

It is more convenient to differentiate by the sign of the

integral when determining the generalized displacements using the

Castigliano theorem than to compose the expression for the

potential energy in form (4.5) and then differentiate it. The

formula for determining the generalized displacer:nt obtained

from this operation is called the Maxwell-Mohr formula:

The Theorem of the Least Work. The partial derivative of the

system's potential strain energy with respect to the excess

unknown is equal to zero

(4&.12)

where R is tho excess unknown. The theorem of the least work is

used to disclose the static indeterminance of systems. The static

indeterminable reactions imposed on the system of connections

(the support reactions and moments)or, the forces of the interac-

* tion of parts of the system on the cross section can be used as

the excess unknowns. Differentiation by the sign of the integral

is recommended during the use of the theorem of the least work

in practice.

The Theorem of the Reciprocity of Displacements. When tw'o

systems of loads are acting on an elastic body, the work of the

forces of the first state on the displacoments in the second £-tate

corresponding to them is equal to the work of the forces of thle

second state on the displacements in the first state corresponding

t3 them.
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It follows from the theorem of the reciprocity of displace-

ments that if two separate generalized forces act on an elastic

systett, the generalized displacement corresponding to the first

generalized forces which is caused by the action of the second

force, is equal to the generalized displacement corresponding to

the second generalized force, which is caused by the action of r

the first force.

Since the generalized coordinates for linearily deformable

systems can be expressed by the generalized forces using the

equation

a.o

oni tle basis of the beginning of the reciprocity of displacements,
,.oefficients a ik must satisfy the condition of reciprocity, i.e.,

a ik = a ki. (4.14)

Coefficients aik are called the coefficients of effect.

2. The Ritz method, based on the principle of possible

displacements, can be used to study the equilibrium state of an

elastic system (linearily and nonlinearily deformable). This

rmothod can be stated in the following manner for systems under

the action of forces with a potential: the partial derivative

of the total energy of the system with respect to the generalized

displacement is equal to zero, i.e.,

At (•.15)

where 9- U_--V is the total energy of the system; U is
the power function of the external load (the work of the external

load); V is the system's potential energy.

The Ritz method is used in particular in bending nroble:nr

to find the elastic line of beams and in stability problems to
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determine the Euler load of beams. In both cases, the elastic
line of the beam will have the form of a series

kv (X q~v (X)(4.16)

where qn are the unknown generalized displacements; on(x) are the

functions selected in a like fashion (the fundamental functions).

The fundamental functions in (4.16) must satisfy the kinematic

boundary conditions, i.e., the conditions regarding sagging and

the angles of rotation. Here the fundamental functions need not

satisfy the excess kinematic conditions, or else we will obtain

the solution for a beam with other boundary conditions.

Having selected the system of fundamental functions, it is

necessary to compute the power function for the external load U

and the strain energy V. When a distributed load acts on the shaft

and concentrated force P and moment *. , respectively, are applied

to cross sections x=c and x=d, the power function will take on the

form:
u.- q,,(x)w(x)dx+_Pw'(x=-c)+e+ýý,'.:• (x•d),.

where I is the length of the shaft. When longitudinal compressive

forces T (x) are acting on the beam, the power function is calcu-

lated according to formula

Formulae (4.17) and (4.18) are correct for a linearily deformab.Le

system. The values of the power function comiponents-are positive

if the corresponding forces generate positive work at the dirplace-

ments. The strain energy V for lincarily defor:rable •ystc:ns i s

determined from the formulae given in p. I of thi• -:ection.

The following syzteom of equationn cain be written after co'pu-

ting U and V according to (4.15):

"Both bendin- and shear indices of beam .aiging cuti be represerted

in form (4.1i).
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where m is the number of terms in series (4.16), which must be 1
limited when solving specific problems.

Since potential energy V for linearily deformable systems

is the quadratic function of generalized displacements of q and

power function U is the linear function of q in bending problems

(the term which is the quadratic function of q is added in complex

bending problems), system of equations (4.19) is a system of hetero- j
geneous linea,' algebraic equations with respect to qn' from which

) .:!they must be determined. The strain energy V and work of the I
external forces U for linearily deformable systems in stability

problems are the quadratic functions of the generalized coordinates,

resulting in the fact that system of equations (4.19) is a system

. of homogeneous algebraic equations with respect to the generalized

coordinates of q This system allows solutions other than zero

only when its determinant is-equal to zero. The unknown value of

' the Euler force is the smallest root of the characteristic

equation.

Problems

Bending of Straight Beams

132. Using the Castigliano theorem, determine the sagging from

bending in cross section A of a knife-edge beam which is resting

freely on two rigid supports for tht. following load situations:

a) the beam is stressed by two concentrated forces (Fig. 98);

b) the beam is stressed by two concentrated forces and a distributed

load (Fig. 99); c) the beam is stressed by two concentrated forces

and a support moment (Fig. 100); d1) the beam is stressed by two

cupport moments M,,o (Fig. 101). Section A is at a diotance of

2/4 from the left support.
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Fig. 98. Fig. 99. j
¶
I
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A

Fig. 100. Fig. 101..

133. Using the Castigliano theorem, determine the settling of

an elastic support which is freely supported by a knife-edge beam

(Fig. 102) with consideration of only displacement due to bending. II

Fig. 102. Fig. 103.

134. Using the Car tigliar.o theorem, find the angle of

rotation of the cross section which coincider wl .h the !.iddle

support of a knife-edge boa-n (Fig. 103). The moment of inertia

of the croc.-sectional area of the beam Is I.
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135. Determine the moment which must be applied to the right

support section of a knife-edge beam (Fig. 104) so that tho angle

of rotation of this cross section is equal to zero.

4

.1, . ;- 'a -- ,
C o

Fig. 104. Fig. 1',. j

136. Determine how much greater the elongation of a stretched

broken beam (Fig. 105) Is tnan that of a ztraight beam which is

stretched by the sa-ie forces S , The moment of inertia and the

cross-sectional area of the beams are equal to I and F, renpectively

13•. Using the Castigliano theorem, determine the sagging of

a cross section under force P o,' a knife-edge beam which is re.ting

freely with consideration of shear. The moment of inertia of t.e

cross-sectional area and the are' of the wall of the beam are equal

to I and w , respectively (Fig. 106).

Cr6

Fig. 106. Fig. 107.

138. U-ing the theorem of the lea:;t work, f. r. d the -.:o:-nt !n
a rigid beam (Fie. 107) with connidcration of :-hear :;traIn. T'k

L.•



moment of Inertia of the cross-sectional area and the wall area are
equal to I and *, respectively.

139. Using the Cactigliano theorei, find the saSging of
the free end of a cantilever beam stressed by a concentrated force

* at the end, with consideration of shear strain. The moment of

inertia of the cross-suctional area and the wall area of the beam

* are equal to I and v, respectively.

.140*. Under the action of concentrated force F., which isi

applied on the end of a cant.'ever knife-edge beam, the elastic

line .s equal to P,).U'r, .. Zr 'i • %1

Determine the Sagging of the end of the cantilever under the action

of a load of intensity q, as shown in Fig. 108.

• ' "IY

Fig. 108. Fig. 109.

141. GIven the _la-tic line of a betm with a constant cros]
section which rc;ts freely on rlgiol vu:)ports tinder the effect of

:rioment v which 13 applied to the right support (xm*):

Find the .o'..tt in the fixing for the bcan., in Fiý. 10). The .or.-nt

of inertia of the cro~s.-•ectiooal arcs of the bedar' is I.

1I2. A kni'fe-cdce beam v:hich iG ehi.-tAl:dl•y fixed at X-1

(pliabil.ity co'ýfflcilent of tVhe ei.t;t1,i fixln6 I:' %) aNd wnhch

re:ts freely on ae la:;tic suppý,rt at x-O (pllabllilty cotff'iclent
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of the elastic support is A) is stressed in sectior x-c by concen-

trated force P. Determine the settling of the elastic support
using the beginning of the 2.east work.

143. Using the theorem of the least work, how car. the equation

foe determining the static inde'erninance of a beam (Fig. 110) be
composed if the following are taken as the unknown: a) support
reaction R ork the middle support (the reaction is directed down-
ward), b) bending moment M1, in the middle support?

-5,,

Fig. 110. Fig. Ill.

144. Given an elastic line oZ a cantilever beam with a
constant cro...ý section under the action of concentrated force P
which is applied to the end (x=$):

pp (X

ii Find the reaction of the right beam support (Fig. 111) using the

theorem of the reicprocity of displacemezAz.

145. Find the line of the effect of a ringle load on the

bending moment at point B of a two-span beamn (icii. 112) which is

fa3terecd c a..tlcally on the left by a rigid support v:ith the fol-

lo-,ing data: It -It- Is3 1.51,; 1, , I, 31, ; U-

l 'i. ri'i] ti.e l 4.ne of the effect of a :;ingle lo. d on the

ohv •r force at point ,3 of a buan; (Fig. .11) which is rIgL-1y faz-

t(r'•.J on th,, left erd. onae irtcr-udjiatc ::ulport i:; claftic anl-
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the other is rigid. Given: I&tI, .Is; IV-cIs; 18, m Is; c r.O.5l. A .- p.-

31+1

__ _ _ _

Fig. 112. Fig. 113.

147. Using the Ritz method, determine tne elastic line of a

knife-edge beam (Fig. 114l). The fundamental function is taken

as *(X) x.

148. --t. A
Fig. 114. Fig. 115.

148. Select the funda:,:.ntal function in the for-n of t..e

polynomial fo a kn!'c-edge beam which is rigidly fixed on the

left end and freely supported oa the rIght. Find the elaztic

line of this beam. leaving two terms of the .eriee: n the expano.-

of sagging. The beam is stressed by a unifor.ly 1istrib:;ted Io.aJ
of Intenzity q.

149. Find the static nterinance o' a ri. y fatAced

nonpris-latic T-bea'i (FIC. 115) which I .•t.:d u, a 1fiforr'.: V

dlstr•' uted load of irnten.:;Ity q unJ t' .i. t: - "L : f ..'" t'..

middle of the ýrjan. Calcilate the i.ntcjr .,: 1!. ti.•: " -' M:tc:.':.

I rocess in the tabila: for", divi.:in:,, th 1c ,t;. (1 o1 boa '.-
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ten equal sections. The wall height in the middle portion is h
and at the fastening - 2h. The width of the bands is constant along
the entire beam and is equal to 0.5h; the band and beam thicknesses
are identical and are equal to t.

Bending of Curvilinear Beams and Frames

150. A curvilinear frame (Fig. 116) is stressed by horizontal
force P. Determine the moment in the fixing.

* S

" p..° " . . a .. . ..

Fig. 116. Fig. 117.

151. Disregarding potential shear and dilatational (com-
pressive) energy, find tne static indeterminance of curvilinear
assemblies composed of shafts with a c~nstant cross section (Fig.
117, 118). Also construct the bending moment and shear diagrams.
Take h =r; P - 2r.

"FiG. 118. Fig, :9.
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152. Disregarding potential shear and dilatational (compres-
sive) energy, find the static indeterminance of a curvilinear

knife-edge beam (Fig. 119) whose moment of inertia of the cross-
sectional area is I using the theorem of the least work.

153. Considering only potential bending energy, determine

the vertical displacement of cross section A of a curvilinear

knife-edge beam loaded in cross section B (Fig. 120) by concMLtrated
moment S using the Castigliano theorem. The moment of iner-
tia of the cross-sectional area of the beam is I.

..-- .g

Fig. 120. Fig. 121.

1 5 4*. Determine the angle at which force P should be directed

to the horizontal axis of a curvilinear knife-edge beam (Fig. 121)

so that the displacement of the point where the force is appliedI
d'te to the bending of the beam alone only takes place in the
direc.tion of this force.

155. Determine the beading moment in any cross section of a

round ring which is stressed: a) by two concentrated forces 'Fig.
122); b) by concentrated force P and tangential forces balancir.n it

which are distributed on the perimeter of the ring and which vary

according to the law qm.,in'* (Fig. 123).

156. Determrine the bendtng :oients, rhear forcer and axlal

forces in zcctionc 1, 2, 3 anJ alý-o the force in the partition

under the effuet of a uniform pre:-ure of :i teroity q on the rir•g

79
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for an oval r-ing composed of shafts with a constant moment

of inertia and which is fixed Iv I xi i.ý cition (Fig. 124).

Take R -2r.

.+l

Fig. 122. Fig. 123. Fig. 124.

1Qii

157. Determine the bending moments, shear forces and axial
forces in s~ections 1, 2 and 3 of an oval ring composed of round

* rhafte, the momnent-c of inertia of whoazc c-us s-sectionahl area: are

*equal to I. and 1 2 (Fig. 125), which is stressed by a uniformly

distributed load of intensity q. Take R -2r; 12 -2110'.

Fig. 125.

Bending of l-enanz on an Ulnrtic bace

158. A ce-i-infirito beam which liic on an ela4tlc ba,'c

with rigLiity K con:t A, -trm:red by a load (Fig. 126, 127).
Determ7ine tI.e bnrlizig !omcnt in t.- cro:ets hectarn of the be,.-

which cn ceztwith the or.'ndin of the coova lincooe (rigid fix-ro.nd.

crha t-i1JIrh; ouppnrt) int know tha~t tho elattic lion e of the

7 7W W



semi-infinite beam is determined by the expression

-*(Cass-~ as ).
under the effect of moment I. applied at the origin of the

coordinates.
i

Ih

Fig. 126. Fig. 127.

159. Determine the angle of rotation of the cross section
whidh coincides with the origin of the coordinates for a semi-
infinite beam which lies on an elastic base with rigidity k and wnich
is stressed in cross section x - S by concentrated moment we
(Fig. 128) if we Know that the angles of rotation of the cross sec-

tion of the beam in question are determined by the expression

W* (X) 7rn.Je'-Cos SN.

under the effect of the moment applier' at the origin of the coor-

dinates.

Fig. 128. Fig. 129.

160. Determirne the bending index at the origin of the coor-
dinates of a semi-Infinitc knife-elge beam which lies on an ela:-
tic base with rigIdity k and wdhich is stresveri accurding to Fig.
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1L29 if we know that the elasticvj.. e'c'' . line. of-. the beam is equal to •

under the effect of concentrated force P applied at the origin of

the coordinates.

161. Using the theorem of t?, least work, compose the equa-

tion for calculating a rigidly fixed beam stressed by a uniformly

distributed load of intensity q which lies on a solid elastic base

of rigidity k. Take M0 as the unknown support moment at x - 0 and

M, at x -a and the intensity of the reaction of the elastic

base ?-n .5-u..

162. How does the solution to problem 161 change if chear in

the beam wall is also taken into consideration? The wall's crosz-

sectional area is w.

163. Using the theorem of the least v:ork, compose the agiqa-

tion for calculating rectangular coverings with one cross connec-
tion which is rigidly fastened to partitions. The cross connec-

tion's length is L; the moment of inertia of the cross-sectional

area is I. The width of the covering is I and the moment of

inertia of the cross-sectional r roa of the beam.s in the main direc-

tion is i. Take the intensity of the reactions of the interaction

of the cross connection and the beams in the main direction as the

unknowns

where r 0 is the intensity of the reaction in the cake of an abcolu-

tely rigid crozs connection. Con:sider that there are large nu::ber

of beams in the main direction.

164. Obtain the exprer-Aion for the claztic line of a knilfc-

edge beam (Fig. 130) ulin- th.0 lPitZ 'mtho I. Take

W (X) as..1 + ai.%'; AL 4S

gm 4S--
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Fig. 130.

Complex Banding and Shaft Stability

165. Using the Ritz method, determine the elastic line of the
ki•ife-edge beam in Fig. 131. LooX for the elastic line in the

form w(x) - aix

166. Using the Ritz method, determine the elastic line of
a knife-edge beam which rests freely at the ends and is stressed
by constant longitudinal dilitzational forces T for the following
Situati•.os of stressing the beamr. with a transverse load: a) concen-
trated force P acts in the span of the beam at x - c; b) the beam
is stresved by a uniformly distributed load of intensity q. The
beam's length is Z ; the moment of inertia of the cross-sectioneal

area is I. Search for the beam's elastic line in the form

167. Using the Ritz method,

determine the elastic line of a
knife-edge beam which is rigidly
fartened at the ends and strersed

T |||||PM|I||I Y by constant longitudinal compres-
sive force,: T and a uniformly dis-

. trlbuted load of intenst-ty q. The

Fig. bea;'s length i. I and the m.ome:nt
of inertia of the cro,:1-ctctional

urea is I. Search for th•e bealz's elasitk line in the forn.

0(4)- .( I-Cs F-d.. ti., bendIrn.• Index of the ben:, in ti.(,

;-



Mid6le of its length' (X S/2) at WEI n cmpr

with the precise solution.

168. Using the Ritz method, determine the value of the
Euler force for a freely resting knife-edge beam which Is compressed
by a constant force and which is resting on an elastic base with
piecewise-constant rigidity (Fig. 132)0 taking the form of the
stabilit4 loss in the f ormo W(4-Asils The moment of
inertia of the beam's cross-sectional area is I and the length-.

K )
.7 _______ Wilk_

S1-

Fig. 132.

169. Using the Ritz method, determine the Euler force or a

freely supported beam whose cross-sectional area moment of inertia

varies according to the law (the origin of the coordinates is taken

*in the support section of the beam') 1I-. hu asT. ,Where S is

* the length of tho beam. The form of the s~tability loss is taken

in the fo rm:

a) & () a, in-;

170. Using the energy miethod, obtain the value of the criti-

cal rigidity K5p of the elastic supports of tha knife-er~dc bear

in Fig. 133.

17l. Using the energy m~ethod, obtain the value of the Euler
force for a freely recting krxix'e-edge beam, part of the lonc;th cf

which is supported by ain clartic base with a rigidity coefficien;t

* . 84
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k (Fig. 134). Take the form of the stability loss of the shaft

as follows: .. t1-..-a

" . I l
, . , .. 4,,.. . .*I

- p|•• • . | ,e. "

Fig. 133. Fig. 134. t
172. Using the Ritz method, determine the Euler force for

a freely supported beam with a staggered cross section which is 4

compressed by a stepped-variable force (Fig. 13). Take the formi

of the stability loss as follows: *x)- own , where La 21 +
+ tO. How does the expression for the Euler force change if we
consider the effect of deviation from Hlooke's law on stability?

--.. , , ,| " *. . .' "-.. .

. . .: #. 4

.8i . ' *Ie .r .

Fig. 1.35. Fig. 1ý6.

173*. Using the Ritz method, detcr'•ine thte Euler force for

the asscembly shown in Fig. 136, aczuming that tle 1,rifts in the
fra-me b*.nd one half-cycle of a Zine wave•. Concidcr the effoct of

deviation from Hooke's law on :stability.

ly'. Uring the Rit:: :method, find the ]uler force of a
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centrally compressed knife-edge beant which is freely supported on
the ends with consideration of shear strain. The beao's length Is

& * the moment of inertia of the cross-sectional area and the area
of the wall section are I and w, respectively. Express the
potential bending energy of the beam by bending moments and the
potential shear energy by shear forces.

175. Using the Ritz methods determine the Euler force of
a knife-edge beam (Fig. 137) which is under the effect of a con-
pressive load diatributed according to the law 14-re+ The

form of the stability loss is taken in the form .w--

'PrP
F Fig. 138

176. Determine the Euler load of a knife-edge column (Fig.
138) under the effect of its own weight, using the Ritz method.
The weight or a unit length of the column is q. The form of the
stability loss is taken as follows: W(4Mu aa+.O.

177. UsIng the Ritz method, determine the Euler force on a

nonprismatIc beam which is rigidly f1xed at x - 0 and which is

co:npletely free ut x - t. Take the for'm of the stability loss as
follow;-: w(x) - Ux . The no'ierit of Ilnertia of the betAn's croso-

sectio1nal atrea varies accorijinr to the law Is(a ~e+).

179. Urnrg the hit.7 rtlhod, ieter-nine the Ei:ler force for a
k:,i;e -.. •.•e bea'n whici iz elastically fa:-te.:', At tiLŽ uc , ('lla-

bil1ty Couffleleoit SLUE-II) and which is fa. taned Iii tl.e
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middle of the span by an elastic support. The pliability coff±*-
ciert of the elastic support A P Tk h omo h

stability lose in the form UwdI.IkIS--.

179. Solve problem 178 for the situation In which one
end of the bea2 is freely supported and the other is completely
free. The form of the stability loss Is taken as follows:
W(x) W aIx + a2 x 2  The pliability coetficeie.. of the elastic
support A P~

I8



CHAPTER V.

COMPLEX BENDING, SHAFT STABILITY AIM THE SI.'4PLEST SHAFT SYSTE.4S

Brief Theoretical Information

1. The differentia- equation for bendlin of a beam which

supportc transver&'e q(x) and longitudinal dilltatior.al T(x) loA Z

(complex bending) eiid which has initial sagclne w(,(x) is written

In the formz

""si (•) w r w)w (s)] q(z) + [IrT)w(z]. (5.1s

The differential equation for co.iplex bending of beams with

a constant cross section which are under the act'-on of a concta.t

lor1gtudinal force (I - const, T - const) Is written In the form

*~i' 5IW -TO;W~xuq( (5.2)

q" (4- q ) + N. s).

The integral of equation (5.2) can be written as follots

w .) - Ae + Agk'x + AZs d k's + Ag ith Wk + u* ().
where AI are the random conotants; W• 1i the partial soluticr.;

If the intenrity of the traix:v.r.c Icad vurlet actcrling tc

the liear law q(x) t-o + .. x, in tht -b:-.,e, of :.ntt,] v.t'..
the partial solution ha.; tiwU follownl-: a!'.s:aran"":

w" put
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If the axial force Is compres•ive, we should set

T - -T*, (5.5)

in all the preceding formulae, where T* is the abiolute value of

the axlal compressive force. Then the integral of equation (5.2)

will be as follows

(W)- Be + Eaha + 82 C" hzx + 833 .i ex +. 2.() ~ 6

where

and the partial selution to (5.14) is transformed to the form.

"W-P( +2Tr' (5.7)

It Is neco:ary to write out two boundary conditions each in order

to determine the integration conotant:; at each end of the beam.

In general, when the ends of the bean are fixed elastically onto

elastic supports, the boundary conditions have the form (the origin

of the coordinates IF taken on the left end of the bea-r) at x - 0

a As [r (,+ i) - EW];

at x- Im W J.EIEW; (5.8)

*u-- .At" r(,. + ') +E w,1.

where A. and A2 are the pliability coefficients of the left and

rJiht ela:tlc ,;upport:; '. :,lid UI, are the pliability coefficients

of tte Pla.;tlc 'n teoilnr.? in tLc --amt -upport•.

1,e boundary con;o1tion, for all of the .'Ampler 1ituationo car
bC obttain.J "r(', .d). T "t-t to replac, I by -T for co::.j.r'ez3ive

fore., In : t.
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Remember that the principle of the nddl'on of the action of

forces can be used in problems of complex bending only when each

of the terms corresponds to the same value of the longitudinal force.

2. These dependences can be used to solve problems of the
complex bending of flexible plates of a cylindrical surface. For

this purpose, the cylindrical rigidity of the beam of band D =
• .-' -- 4) should be used in these expressions instead of beam

rigidity EI, while we mean the pressure and axial force which act

on a beam-band of identical wi-Ith by q and T. If the beam-band

subjected to complex bending is located on a solid elastic base

(the problem of bending of a round cylindrical zhell under uni-

directional load), the differential equation for berding, its

integral and the auxiliary functions which make it possible to

determine the bending elements of the beam-band can be obtained

by using dependence [3, Table II].

3. The Euler force of single-span shaftA can be determined

using integral (5.6) at .. ,(x) -. O. Maiong this integral adhere

to the boundary conditions, we will have a system of homogeneous

a gebraic equations with regard to the integration c:onstants.

Equating the determinant of this system to zero, we should find the

smallest value k* = k* min Then the value of the Euler force will

be equal to

T.-(5.9)

Formula (5.9) can only be used when the Euler stress "•--TlF.

where F is the cross-sectional area of the shaft, does not exccee

the proportionality li'it. If thiu condition is not satisfied,

the actual stresses at which loss of the beam's stability occur-

(critical -tress w..) arc determined from formula "fo-00n,

where i is the coefficient which accounts for tihe affect of the

deviation from Hooke's law oi, Vtabilitý (deermined dopending on

the ratio of the Luler stress to the yield point of the shaft
m=aterial [1, Fig. 15A]).
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When studying the stability of shafts which lie on a solid

elastic base, the differential equation

re Iv (5)+40)*

can be used with consideration of shear deformation, where w i(x) is
the sagg'ng from bending; Gw is the rigidity o& the shaft to shear;

k is the rigid.ty coefficient of the elastic base. i

The form of the integral in equation (5.10) is generally very

complex; however, for a beam which is freely supported at the ends

it is possible to set

" a w-.sin (5.11)

where n is the nwmber of half-waves of stability ss.

If shear strain is not takez4 into consideration (Gw = c), the
integral of equation (5.10) is written in the form

, Cos Px + CS $Ili Fx + C,4Cos , + C4 sin ix,

where

t~~ 
* .. .."

F4

-taking (5.12) adhere to the boundary conditions, we will have

a system of homogeneous equations. The Euler forca should be
determined as indicated above.

If there is no elastic base, but sh&: -train• : taken into

consideration, the value of Ti is determined according to for::.,ia

~ sub:itutingr Mon in it for :*
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4. The equations for the'continuity of the angular deformations
on the supports with consideration of axial forces T and moments

M, (the type of schem.e with five or three moments) should be composed
when studying the stability of continuous shafts which are supported

on elastic (or rigid) supports. In addition to these equations,

the dependences which relate the displacements of these supports
wi to their reactions Ri are composed for beams on elastic supports.
In order for the system of linear homogeneous algebraic equations

thus obtained to allow the solutions 141 V 0; w, / 0 (or Mi I 0 for
shafts on rigid supports), it is necessary -.,ate the determinant
of this system to zero, the least root of i;..n will be determined-
by the system's Euler load. If a shaft of length t is freely sup-
ported on two edge supports and the intermediate elastic st •orts
have identical rigidity and are the same distance from each othcr,
the relationship between the required rigidity of these supports K
and the compressive load T is established by the formula

WEI (5-14))

where i V-Go,; Ei is the beam's rigidity; m--. +the

distance between supports; s is the number of elastic suppo-ts;

-. , is a parameter; 0=--7-; TinaF; F is the cross-
sectional area of the beam; Xt (W is the function of par- eter

X and numbers n and J (i1SJg n), determined according to Table I
of Appendix V.

The critical rigidity of the elastic supports can be deter-
mined from formula (5.14), assuming that A i and '=0 '

where 4o, is the critical stress which corresponds to . The
increase in the rigidity of the supports above the critical value

does not result in an increase in the compressive load supported

by the shaft.

5. The problem of the stability of a flat rectangula Jeck

covering conzisting of knife-cage (generally, different) compressed
lengthwise beams which rest freely at the ends on rigid supports
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and which are equidistant from identical transverse beams which are

arbitrarily fastened at the ends is solved on the basis of the

assumptions given in p. 4 of this section and by means of the pro-

blem of the vibrations of a weightless transverse beam which supports

concentrated masses at the points where it intersects the length-

wise beams.

Using the solution to these problE ., it is possible to obtain

the equations for the stability of various types of coverings. The

basic design formulae are given below, in which the following nota-

tions are used:

I - the length of the covering;

L - the width of the covering;

Zi" *L - the middle portion of the width of the covering which is
not reinforced by lengthwise beams;

a - the dist,'nce between beams;
s - the number of beams;

b - the distance between ordinary lengthwise beams;

bi - the distance between reinforced lengthwise beams (carlings);

F - the cross-sectional area of ordinary lengthwise beams with
given bants of width b;

F1 - the cross-sectional area of a reinforced lengthwise beam

(carling) with the given band of width bi;

i - the moment of inertia of the cross-sectional area of an

ordinary lengthwise beam with a given band;

i- the moment of inertia of the cross-sectional area of a

reinforced lengthwise beam with the given band;

-xp the critical stress of the covering;

S- the coefficient which accounts for the effect of deviation

from Hooke's law on stability;

SIEI .
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,(A.); i ,Q) - the functions determined from Table I of Appendix V

depending on parameter x (or X,) and numbers n and

J, where j is the number of half-waves of the form of

stability loss (15 JS n).

The covering consists of a large number of identical equidis-

tant lengthwise beams and identical equidistant beams which are

elastically fixed at the ends (see Fig. 159). The moment of iner-

tia of the beams which provides the covering with the assigned

compressi','! stress is determined by the expression

Ss 4 L 3• .

where coefficient Q_•).4 for coverings which are reinforced by
lengthwise beams along their entire width is determined according

to Table 2 of Appendix V depending on the conventional support,

pair coefficients of the beam fastenings:

1+ "+ -

#As and ",, are the pliability coefficients of elastic fixings of

the beams onto supports.

are determined according to Table 3 of Appendix V for

coverings in which the lengthwise assembly is missing in the middle

section at length Z, - eL (see Fig. 160) and the beams are fixed

symmetrically, depending on the conventional support pair coeffic-

ient of the beams' fastening 2"- - and number -

The values of x(X) are determined from Table I in Appendix V.

A specific value of the moment of inertia of the transverse beams,

called the critical value, exists for this type of covering. The

further increase in the moment of inertia does not result in an

increase in the compressive stress which the covering can support.

The critical moment of inertia can be computed according to for-
00

mula (5.15) at X. I and n. where e,, is the critical

stress which corresponds to e.
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The coverinG consists of a large number of equidistant lenrgth-

wise beams, some of which are reinforced, and equijii-tant identical

beams which are elastically fasteneJ at the ends (see Fig. 161).

The moment of inertia of the beams which provide:. the covering with

the assigned compressive stress

i( ) 4 L ) .~ +.b ~ b xQ4 (5 .16)

where -. and is determined from Table 2 in

Appendix V. At assigned A and X,, functions y4(A) and X(,Q.) which

are entered in formula (5.16) must be determined for the value of

J at which the moment of inertia of the transverse beavis is the

greatest.

The covering consists of a large number of identical equidis-

tant lengthwise beams and identical equidistant beams which are

resting freely on a carling and are elastically fixed to the edge

(Fig. 162). The moment of inertia of the beams which provides the

covering with the assigned compressive stress is determined from
the formula

* ( -)+x,(x). (5.17)

Parameter IL, is the root of equationb [I ,,xi(0i"1

"F(p; x)= -2 1)J

and the numerical values of function F (Lj, K) are given in Table

17 of textbook [1]. The value of j is selected so that the moment

of inertia of the beams is the greatest.

Sometimes it is necessary to determine the critical stress

according to the given 6imensions of the covering when studying the

stability of these coverings. This problem is solved graphically,

subsequently assigning the values of v. , for otherwise it is

impossible to determine the value of n
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Problems

Using the Differential Equation for Complex Bending

130. Find the equation for the elastic line of a cantilever

knife-edge beam which is stressed on the free end by transverse

force P and which is compressed by axial forces T. Determine the
LI

bending moment in the fastening at T--j-.

181. Find the equation for the elastic line of a beam (Fig,
139) and the value of sagging in the middle of its span.

F.•

• . - - r _. -._

Fig. 139.

182. A rigidly fastened knife-edge beam is compressed by

forces T. Determine the reactions and the support moments if the

support cross section of the beam (x - 0) rotated by angle. w(O)=1.

183. A rigidly fastened knife-edgr beam is compressed by

forces T. Determine the reactions and the support moments if the

right end of the beam (x = Z) received sagging w(Z)=i.

184. Find the static indeterminance of a continuous knife-
,,EI

edge beam which is compressed by force T-0.4-0-,. where I is thu

moment of inertia of the cross-sectional area of the oeam, 3? 1.

the length of the beam (Fig. 140) and A--r.
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Fig. 140.

185. Find the value of the dilitational axial force which

acts on a beam (Fig. 141) if the sagging of the elastic rupport18

increases two times in its absence; A.- 24-E1

Fig. 141. Fig. I 2.

186. Obtain the approximate equation for the elastic line of

a freely su~pported beam-band with an initial sagging w0 (x) -

. I--Cos.2X, which is stressed by a uniform load of intensity q

and compressive forces T. Solve the problem by the Bubnov:-Galerkin

method, leaving one term of the series in the expansion for sagging.

187. Determine the maximum summary stress in the meridional
and cross sections of the covering of a round cylindrical shell

which is reinforced by ribs and stressed by nn omnidirectional

uniform pressure with the following initial data: shell radius of

2.75 m, shell thickness of 0.02 m, distance between ribs (spacing)

of 0.60 m, cross-sectional area of the rib of 3.5.10- i
2 , pressure

of 39 kg/cm2, shell material normal elasticJty modulus of 2.106 kg/c:!12 .
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188. Obtain the equat'on for the stabilicy of the shaft depic-

ted in Fig. 142. Determine the Euler force -t Am-w.

189. Find the Euler force for the -:tructure in Fig. 143.

'. IF

Fig. 143. Fig. 144.

190. Study the stability of a knife-edge beam with an inter-

mediate elastic support (Fig. 144) by integrating the differential

equation of equilibrium. Determine the Euler force at a-".;.

191. Determine the Euler force and critical rigidity of the

supports of the knife-edge beam shown in Fig. 145.

a) b)
T r

A!

W 2L~

Fig. 145. Fi. 146.

192. Dete:':ine te Euler force T for a kA..Ž,.-ed-c, beam which

is rigidly faPiten,!d to ý:lldinr ?lIn:-tic :-uppurtF (Fig. 14 6 a) without

9e



resorting to integrating the differential equation for neutral
equilibrium. We know that the Euler force of the beam shown in
Fig. :146b

193. Determine the Euler force of the knife-edge beam In

Fig. 147 by integrating the differential equation of equilibrium.

Euler'to" At

Fig. 147. Fig. 148.

194. Using the solutions to problems 190Oand 193, determine

the Euler force for the knife-edge beam shown in Fig. 148; A-&.m

195. Compose the equation for the stability of a beam with
alternating rigidity which is freely supported on rigid immobile

and mobile supports and which is stressed by an axial compressive
force applied at the point where the beam's rigidity changes (Fig.
149). Determine the Euler force at and . -j.

-L-L

Fig. 149. Fig. 150.
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196*. A freely supported compressed beam is connected to a

freely supported beam with the same lenath t and moment of inertia

I, (Fig. 150) by equidistant frequently placed partitions uith

rigidity K. Determine the Euler force of the compressed beam.

197. Find the Euler load for the structures shown in Figures

151 and 152.

Fig. 151. Fig. 152. Fig. 153.

198. Find the Euler force for a knife-edge beam, the left end

of which is supported on a rigid support and the right end of which

is rigidly fastened, with consideration of shear strain. The beam's

length is I, the moment of inertia of the cross-sectional area is
El

I and the wall area is *. -0.

199. Determine tne Euler force of a knife-edge shaft which
El

lies on a solid elastic base with rigidity k 0- -0- and

is freely supported on the left end and rigidly fixed on the right.

200. Obtain the expression for the Euler force of a freely
supported knife-edge beam which lies on a solid cla:•tic base of

rigidity k with consideration of zhear strain. Determine T# and

the number of waves of -tability lo:-; n for the situation iwhion
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-- 0.02. dHow does the re-:ult change if _'hear is

not taken into coniideration?

201. A freely supported compressed b. m (FIG. 153) is

supported through an incompressible piller in the middle of the

span on a cross connection of the same length and rigidity. The

cross connection Is connected to the bcams in tlie main direction.

The latter, with length I , are freely suppoeted and are installed

at distance a fro. each other. What moment of inertia i must the

beams in the .ein direction have so that the Euler force of the

compressed shaft is Tb-:

202. Determine the moment of inertia i of the crozs-.-ectional

area that cantilever rigidly fixed knife-eoge beamr in tLe main

direction which support a comprezsed freely supported knife-edge

cross beam must have so that the Euler force of the latter is equal

to ' The length of the cantilever bearn2 is I ; the

distance between them a4L (Fig. 154).

Fig. 154. Fig. 155.

203. Solve problem 202, a•suming that the beamns in the main

direction are freely supported nt the erds and that the cross ben..

passes through the -:iddle of tý.e width of the coverinC. The moment

of inertia of tie cross connection ic equal to I. A:-:uie

L:I1 I0 L:1 0.
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204. Study the stability of a knife-edge beam which is

fixed in the middle of the length by a rigid pillar-which is con-

nected to the covering (Fig. 155). Ff.nd the critical mom~et of

inertia of the cross J-onnection 4%p. for the ratios - L

-- 10;,,t.3 i.e., that moment of inertia whose further Increase does

not result in an increase in the Euler force of the compressed beam.

'-- 1 . ,
ST

Fig. A*56. Fig. 157.

205. Determine the Euler force of a freely resting shaft

which consisz of two shafts with infinitely high rigidity Joined

together by a hinge and whict is reinforced at the place where the

hinge is located by an elastic support of rigidity K (Fig. 156).

206. Find the Euler force for a ccntinuous knife-edge beam

(Fig. 157) with the condition that •,. |.41t

207. Solve the preceding problem with the assumption that the

left end of the oeam is rigidly fixed.

208. Determine the Euler force of a kniie- ige beam (Fig. 158),

if Aso - and Is 21•.

209. How many intermediate

equidistant identical elastic

supports must a shaft with length

Z and rigidity Ei which is freely! .1
..supported at the ends have so that

•A its Euler force increases seven

times? Tle rigidity of each sup-
Fig. i58. port is equal to K-43 --.&
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The effect of deviation from Hooke's law on stability iz not taken

into consideration.

210. Determine the critical stress of a knife-edge shaft which

is freely supported at the ends which is on three equidistant iden-

tical elastic supports of rigidity K = 610 kg/cm with the following

initial data: I - 8 m; F - 4,.10-3 m2 ; i = 8.10-6 m4; f =4000 kg/cm2 ;

E - 2.106 kg/CM2.

211. Find the Euler force of a beam which is freely supported

at the e,,ds and reinforced by five equidistant identical supports

with rigidity K-8.2 The beam's rigidity is Ei and its

length i. V.

How does the result change if the rigidity of these supportc

is "spread" and we consider the stability of the beam on a solid

elastic base whose coefficient of rigidity is _•ual to k = ,

where a is the distance betueen the supports?

212. Using the data in problem 211, show that the acceptance

of the "spreading" of the supports' rigidity leads to a substantial

error in the value of the beam's Euler force if the rigidity of

the supports is equal to the critical rigidity.

Stability of Flat Coverings

213. Determine the compressive (critical) stress which a

deck covering (Fig. 159) can support with the following initial

data: =8 m; L = 16 m; a = 2m; b = 0. m; ,-.-o.25: =

- 3 4.6-10-4 m ; I = 6.8.10-6 m4n1 ; F = 4.310-3 m2 ; v. = 3000 kg/cm2 ;

E = 2"106 kg/cm2 .

2141. The necessary moment of inertia for the beam of the

covering considered in the preceding problem, ccmpued without

consideration of the effect of deviation from Hooke's law on
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stability, is - 16.6.10-4 m 4. Hou do the support pair coefficients
so of the beams' fastenings change if the deviation from

Hooke's law is taken into consideration at the same values of the

beams' rigidity and the compressive load?

A* -1• . " I• [ t |" "

.l - I. I I L I !.

Fig. 159. Fig. 16o.

215. Determine the necessary moment of inertia I of a beam

in order to provide the cc,ering (Fig. 159) with a critical stress

of p- 2700 kg/cm2 with the following initial data: t - 15 m;

L = 20 m; a - 2.5 m; b - 0.4 m; m--x,, - .h; u0 = 9.10-6 m4;

F = 5.2"I0"3 m2; r = 3000 kg/cm2 ; E - 2.106 kg/cm2 .

Compute the moment of inertia i of the lengthwise beams at

which the necessary moment of inertia of the beam can be decreased

by 30O. Take the area of the lengthwise rib equal to I,-0.4rY.

and its area with the adjacent band P-l4+bf. in the -alcula-

tions, where t - 0.01 m is the thickness of the deck of the

covering.

216. Find the necessary and critical moments of inertia

uf the beams for a covering (Fig. 160) at the following initial

data: 2 = 12 m; L = 10 m; a - 2 m; b = 0.5 m; i -R- ;0'.4;
i = 10.106m 4 ; F = 5.75-10-m 2 ; ff., k ./c2 ; u = J000

kK/c.n2; E = 2.106 kg/cm2 .
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21T. Determine the necessary moment of inertia of beams
providing the covering with 04- 3000 kg/cm2 for a covering which
consists of a large number of lengthwise beams and three equidistant
carlings (Fig. 161). The beams are freely supported on the edges.
Also determine the necessary moment of inertia of the beams for

a covering without carlings, which are replaced by ordinary length-
wise beams. Given: S - 15 m; L 12 m; a - 2 m; b 0.4 M;

b , L4 " 3 m; F - 6.2.10-3 m2; 1- 11.2.10-6 m4; F1  1 11.8.10-3 m2;

-3. 8.10-4 M4; q,. 40Okgc 2  u-300 kg/cm2;we2 E 2.-

kg/cm2.

"Z. l l ! . 1-1 ' 1- "
1,ll H 11 "1.-!i i : "

' I

11 L. L I • I .Ff " " - '", L

Fig. 161. Fig* 162.

218. Determine the value of the compressive stress which the

covering in Fig. 162 can support at the following initial data:
S:12 m; L = 3. 6 m; a = 2 m; b =0. 4 m; x-.5 F = 1.0-3 n2.

1 8.1.10-6 m4 ; F1 = 10.10-3 m2; i. - 2.8.10-4 m4; I = .89.10-4

4 '

mFig.6 4000 kg/cm2.
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ANSWERS, INSTRUCTIONS AND SOLUTIONS

1. "(X) so •- r• "0- rt -2-1-+A-M•• --p-A
" m2 r--•'W] is

2.
hee r 1+ 3.x__$. .

, -r•?"7---i ' + • " *2. W-(x)--21LT,-T+T-QW-•r--T'•• ., ' .. ( -- ".;'•where - _I

3 X o; p r 6+ (1 80). x- 3 A*xG 0 where in UE.

4. wm,- om .- ;r.' 7-•.
I 1TJT 3.5

ItP r -3 t

-wherehe

5. -'.52 •-1•5'zu- s+4 •

9,fa a1 4 Zlr

PIP9. (= ---D-"+ '6
10 . t, P 0 -9. • •

3.(-f) +3+-L- (,L-÷)( X+20
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1.1. Solution. The general expression for in elastic beam
line can be written in the form

where R is the reaction on the middle support (the positive
direction coincides with axis z). The integration constants and

the unknown reaction can be determined from conditions:

zinO W.-w'
at 1-'

Sia WwO0 J (2)

Making (1)'satisfy conditions (2), we have

MCIuu4  M 0.

*.- +. + a- or MO

Hence we find

41--.)

C,.4 1El a41-a'

qal-i) 3P+4f1-a'

Therefore, an elastic beam line will have the form

3a - (1a)' a £3 3

IOT

Figuran e 2rit0 shon the beningmomn n ha igas

• "• ""• •(107- *,-



I&
#1 - "- € ,i

I I + t

i:Fig. 211.

Fig. 210.

13. a) mO. o=; b) V0.375 (the solution of equation

where *.,-, 31LEI.

15. A:i 5 +
•.: ":. :., wh •Oere u+ m6E- .L ('n.~,!( .+ '21 ".-a,+, ""

2--, . . (a,''• +( 21)-i-0 P" where a, .6E "•L. (I- . 1 2).'

16. *M 1 M its 4a..+- "T"16 . '4" - . '(2G0(• e Ma'.2.•-T _+ 1 .- To-+ 2.... (20 + ,35"

where W- 6EIL.'

I7. z me Co0.591.

i8. .-9--•2.

19.

20. Solution. The elastic beam lines are identical; the

braces' bending point is halfway up their height. Because of this,

each of the beams bends under a load with intensity of 0.5 q and

bending moment whose intensity is equal to -,- , wheree--

is the proportionality constant between the angle of rotation of
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the final cross section of the brace and the bending moment applied

to this section.

Composing the equilibrium equati-., for an element isolated

from the shaft (Fig. 211), we obtain

A_ A ,mN €i i(x). I _. dM(it) I e

or
l 6 ' . .EI- -' .----- q.

We can write the integral of this equation in the form

S(x)-- " .&+.A + *+C x+ Dh . ,•,

where

Determining the integration constants A, B, C, D from the

boundary conditions

we will find

W() qSP S u-2- xS -2' h
.. \'.-- ",j" ch08 1

where ",- 1.

S P 3 . - P.SPP

" •"-PIS . 6El'" x X3 " i -¢ '

22. -(x)-w,+ ---- r-)+ -I I-) I JT+

. -e ['' l1

23. The elastic line will be antisymmetri-ý relative to the

middle cross section of the beam. The origin of the coordinates

is taken in the middle cro2s 2ecction of the beam, axis x Is

directed toward the right,

109
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• :. •, ,,, -, ,,+ .-fl)-zc -: ,,- •- ~-.-----'-)1i------r

(,X,- .:) + %., ..,. ... ,* ..W t ... .....W . + + .71f

31. " 3A. MEI ... - . El- AZ#

25r.

where 6 .1 ., .+*SE +-2i..2 .. ___.ll.i.- il.+l4 --r.'

The origin of the coordinates was taken half-way down the

length of the beam.

26. 4) 1+ (+ .... , -).-,4x);

2) PP (4 7!5 Sx).*

" + ~ "tf-. ".

Poisson's ratio P-0.3.

27. Instructions. Use the results of the solution to

problem 26. RO.5Q

,.- O_• . -S=',"e"

where 1i. .12. . . 1+ 125 L

El.
"28. -1) _,-,T_.

M,,_' (I,+,1 - ),
2) -mar)

6E1 * E

3) . where .a-1+12 .

29. 1+45.5



L

30. The pliability factor at point D

A.-

the pliability factor at point C

Fg 212. Fig.'. 213.1•[

." , j.,,*.,, ,..*'. : "'.. :

• :% "% .... " o... .

7.- 4.-' ,, ** -"' • ,'"

31. Solution. Since point A of beam I-I is immobile, this

beam's angle of rotation at point A is determined from the beam's

design diagram (Fig. 212) from the system of equations

L :.+.M 0.

hence

M! .,- ,M •e . i • +--: :; li

Therefore, .

The pliability factor

In order to determine the pliability factor of beam AB in
cross section B, we find the angle of rotation at the free support
of the beam (Fig. 213) from the concentrated moment M applied to
the free support
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Therefore, the pliability factor of the elastic fixing

M - .

32. In the middle of the span

I + G 481 4$AE(, + 3UEl\.. I• , + s ,'. 1-._.. 1.....,._.., ., _,_ L ,,, -- .+ ,
MAr-- 4+UE1 24AElI+ -- T

In the support cross sections

33.L. 1&5?.qO

34. The sagging of the elastic support ,, _ . The
vertical displacement of joint G km-- "."

The bending moment and shear diagrams are given in Fig. 214.

ft

F

Lf 1..

3A6. M-'/
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37.

38. Solution. The pliability factor of the elastic fixing

at the left end of the beam

The pliability factors of the first and second intermediate
supports

A. .

Asmi. - ,• .,• r ,

The equations for the equality of the angles of rotation

at the supports can be written in the form

M I

-54., 0 W, ', .

•" M , - ', M .- .T, -.

:• -s••,- .- j•77.4-_ _ ,•_-_

."M. Mi " • .h.o
70, M. •-o

Here fl and f 2 (sagging of sections I and 2) are related to the

support moments and the load by equations

h ". •41- " . -'+* , 1

, I M .st , .. , A-- t:-- , -' -I .5
A; _- ,P-_m _ --. I, - ,-!

Substetutand (5) in (o) and using the previously found values for

the pliability factors of the elastic fixing and the elastic
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sup---,- (Sto0 A1 and A2 ), we obtain the following system of

equations:

+ o0.09Me"O C OOP
,w,,,-• .z. 5 .4-K.2 M.""0.41 1.081

4) 0.04M 1'+ 0.$Ms + 20"sM- 0~35-'

The system of equations is solved according to the Gauss

system in tabular form:

Table 1.

"Equationa -$mof
-n ber AG -e fi. @

Gients

, 232 0,A - "0.06 - 'o.46 3.66
2... 0.80. &W ,X o0,04' o0.83 5

3 0.05 13,3 4,22 0,80 I.1.01 118.53"4 - 0.04 0.90 2.01S.. 0.39 3

.1 0,354 0.034 - 0.'96 1 .557

2 0,6 5.35 1.30 0.04 0.83 8.33(-0.4- *) -0., -o,.6 -4.027 - -0,150 -1,262
-S 5.064 1.273 0.04 0,671' 7.065..- - , - - *1"...

.00 - 3 '"I: 0.006 013

" 3$ 0.0 1.30 5,2 0,90 1.01 ILSI0, ,-0,) -40,08 --0,028 -- 0,00 - 1-. -. 0,16 -40,127
-I,2- -0.32 -- ,0 0.1W -177.- 1• - - 4.8 oleo. 0,&76 6.613-

The '1~ i.00~ 169 ii.3 upor

T - 0..a M 0. , - I'
.," :4 0•0 .0•-,0 2.0 0.39" o .• 3.39
111-,,-04) -0,0 -0..01o ,-O..o -- 0.005 ,-4.055

,,,.-0.,89 -0.9 -0.o.,. -0.150 *-,.0

". . , "7 - o.,+ 14 ""
• "• Ii~-- 0.'0095 .

• . ~0,160 ,.

ThTus, A46 " ,160qP'; Afs.=, 0,095q,"; Af ,, 0,146q,"; M,,-- 0.124•rP.

The shear forces on the beam supports: or. the leit support
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SM---e --o.sqj_.,*.5qi to the left of the first support

At4~ -At' +0.591-0.435$;.,

to the right of the first support

.4 IM5

to the left of the second support

to the right of the second support

at the right end of the beam

N`7 At, - t + 0.50 -, 0.4780.

Figure 215 shows the bending moment and shear diagram of

the beam in question.

Fig. 215.

39. For the bea- shown in Fig. 24, support moments M,-O.04Wq1;

Mw--.015q1; M,0.o22qP; the ::.ear forces in the support sections
N, = -- 0.31q1; Np - 0.064q1; N, -- V .M' bql'; N, '=0.232ql.

Figure 216 shows the bcnding io!,,ent and shear dia-ra,!ns.

For the b,.an shov.:n in Fil. 25, rupport moments M,--o.13W1.
M,-0o.0o3Q1. M,-O.1i2Q,; the chear force:7 in th-e :;upport sections

N.i =-O.q'. V$, -- u.Q; N;, =-O.14Q. NU 0,36Q.



r-.-.~-Fig.. 216.

Fig. 21.

40. ~ ~ ~ Fg 216.pot oens

Figure 218 shlows the bending moment and Shear diagrams.
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-I.

Fig. 218.

41±. Support moments Mom 0.06 q ;. Aft-O0,33q . Ms

Shear forces N.--o.•l; N,.. -- LO.5q1 N. -0ý.8q,1;

N", - 0.SS1qf; N,.ý - .- 0,43qt, No,. - 1.570*.

Fig. 219 shows the bending moment and shear diagrams.

I. . - •

Fig. 219.

2.M, O,00072QIo;
• O.031QIo;

117
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"" +In I3 1 .1 3 1OOIP

436. nsru. U ls t " o te o s

44 . ,. + 1

where a -t i s the load on the upper beam; Q0 is the load on the
lower beam.

117.

45. -1.4M .• Mo -= -0.032A1.

416.- Instructions. Use the theorem of three moments.
Ratio .• is determined by equation 1+•s,_ _T0 the

solution to whii.h nosO,.7

47. W - T-

48. Instruct ons. Use the hypothetical support method.
The support moment _ determined by the equation

P r 2 t 6 7e O T ] + -/
4 9 . - , .

50. M--I 1 EI

51. a) A 0.011o,, SA'. = 0.0&47,;

b) A "- -T.

52. Figure 220 shows the bending moment diagram.

53. Figure 221 shou.: the bending moment diagram.
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Pi . 2 . ." .:•. ;A•

Fisg. 220,.

"�,�rSyri 4,.oa,

Fig. 221.

54I. ski.6+ 0.3 (+)2,+ 0.3,A

55. The moments on the second and third supports

1he moments at the fixing

fie.

MI IJA6 .3-f 1+*07t58..G°l

1(V, + o.,, 1I, Q )'I
.. - No ... 0 OL() +. 0.16 A

56. Figure 222 shows the banding moment diagram.

57.•. ;.

58. R9 ,--. --..-.

1.19



Fig. 222.

59. 4

6o.

6Q. 2.H-C
61. +" -L-C -- o.+9 -,

.. B' Q + "--t+ 3 T,-,.
+111

'.•,•-T'•- 3 __ •

62. i- tasi'aE- - ( Cos a-+ s~

6 3 . M , -, .-o. te~ ; M a - ; 0,21912; A ,- " 0.3q .

Figure 223 shows the bending moment diagram.

4V.'L. . -0.,W.

Fig. 223. Fig. 224.

614. f, --0.0254q,2 ; At, O.0725qI3; M, - -O.II23qP; - A4 , -O.0030?qP.

65. Solution. Separating the rods in bundle B and loading

them with the forces applied to the ends of the rods (Fig. 224),
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we will write the conditions for equilibrium and the eq*ality of

the displacements of the ends of the rods. The equilibrium

conditions:

)!"+PCs6-+ Tgesina '.P; P laIns+ rTL-rsmO.o.

The conditions for the equality of the diaplacement of the
ends of the rods:

1, 4 - P 'A f

-o,.! r',,. + " U Tt - "

From the joint solution of the system of equations we find:

r I.41M. r. no CI•sp. P& -_.,037.6, P, - 0,017; M - .-.3,1. I'sPi,.

The approximate solution to this problem can be obtained in

the following manner. Without consideration of dilatational-

compressive end bending strain of the rods

.- p7 -: * I
T1 ---3.7Sw; T-'2P.".%•IgfS " . .. a

In order to determine the bending moments in the rods of an

outrigger assembly, one should find the vertical displacement of

the bundle B due to extension of rod AB and compression of rod

BC. This displacement can be determined from the expression

pi *7T 64P:
• ~- .:. ..- ,f 11.73 + , . P

The displacement of the end of rod B perpendicular to the

axis of rod BC

.764P1 P
1ACinIaA cos. a..~. 0.865 0.66y3

The forces which act on the ends of rods AB and BC (see Fig.

224) are determiined in this case fronn the equations for the
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equaiity of the displacements of the rod ends:

-,,l, ,, Mir-. .• .,., . .

•*,.. - .ur.-it-.. ' -#l... K,"'..

Substituting the values of fBA and fBC in these equations

and solving them, we will find: Pi=O.O25P; P2 =0.O145P; M--1.23.
. jo-3P1.

If the results of both solutions are compared, it turns out

that the simultaneous consideration of the dilitational-compressive

and bending strains of the rod has a substantial effect on the val-

ue of the bending moments in the rods when determining the stresses

in the rods of the outrigger assembly in question.

66. N..m

67. For the assemblies depicted in Fig. 51, M,*:-O.047q•;
"Me=.O10qP;MAla -O,01060q.; ,4 - O.052q0'. For the assemblies shown in

Fig. 52, M, m O,425P-+ O.oqt.; P4 -- O.075P1+ O.OQI; M3 - 0.

68. For the assemblies shown in Fig. 53, m,- O.041q11, M,-O.Om6ql;

N,.,. - 0.5q-••, , - O .24q. N,.A, - 0.04#. N,., - N.., -- .-- ,U~qL. The bending

moment and shear diagrams are shown in Fig. 225.

Fig. 225. Fig. 226.
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For the'assemblies shown in Fig. 5•, N , p-- ,,0685P. N1., --. UP.
¾.,Vv 0.45P. Nt , a -0.13P. tla,.s --o.023P. N,..o,, O.009P; Mt"- .74PI. ;,Is .Or11l Alt -- OOlP, 'l. -OO2p

Fig. 226 shows the bending moment and shear diagrams.
69. v, - mt. a- 0.6, Mt - Ms, e -0.,0185aq; R - 0.174q/; NV.%.

N M--,14i; NX.2 - 0,28ql. No., - 0.1O1l,. N1., -Ns.s -

The bending moment and shear diagrams are shown in Fig. 227.

Fig. 227.

70. For the assemblies shown in Fig. 56, M,--o.o0qP; m,_o,mqI8;A,
- 0,oo;qp; M4 --0.00Sq. The bending moment diagram is shown

in Fig. 228.

Fig. 228.

For the assemblies depicted in Fig. 57,
,M,. - 0.00,141q'; Aft.% -- 0,I650"

* M,., -M., ~i4qP; M,, = -O.O24qIS; At,. 4 = O.045qlt 1' 8,. =
-0.021 qL'; Aft., = 0.127q0l; At f4*- = -- 0.1.86I q8; M-,#. -- 0.061#3q.

Figure 229 zhows the bending moment diagram.

For the assembly shown in Fig. 58.
A " 0.0135qPs; if,.- 0,087qP;

Af|., =- -0.096qp; " ft-l, -Al., - 0.148ql; M _1, =: -O.O. 6qL; Af3*.
-0.008q13; "*A , - O=,075q'. At,.-, - M .4 =. 0.063qP.

The bending moment diagram is shown in Fig. 230.

123
ilI



Instructions. When determining the bending moments in the
units of the assemblies shown-in Fig. 59, divide the load into the

symmetrical and axisymmetrical parts.

The moments in the assembly units are equal to:
M -M ?I qP; Mý,.,- 0.OQfqIS

I sS- -4AO004p; M,... -003P 7 I 5, h 'M--A 0.23-i0- L; M61..-
:.0.07 1'; M&&- .10i..L; M'61,ra.ja 12 0 0,. 10- ltP M&-& se

1-097. to 'qP; M&.1. - 0.63. 10- 5L'; M1 M&;6!0.. -10qPM.-
*--0.24. WIO'*; Ms,... - 0.29-.10'P 90. .86 0,A. P; .P MS.. -L'.-$
- -0.4. I0-q~.7. .

The bending moment diagram is shown in Fig._ 232.

Fig. 229. Fig. 230. Fig. 231.

-1 7Mi rn-0.283gL'; M.1,- 041?qL; MS ., -AMS.:1-i 0J250qjP Me., iu

52 7A M., - -01 .26- -7.05. I0'qrl; M4.;, - Ki,37 .10'q^'M.M..
72 0'P. M,, - ; Me.,71'P Mp.41qP 6-j -M9-# .- 0,t2.IO0q5' .M,

Mb., -,..,- -. 46.iO'P; M..s M,:g .~M.,i 6-1.62. 10-10;

e s. -0.54. 10- ql'; M..4.- 0.72- 10" 9qL; M&...I -0, 1S.10'SqP; % Mi.,
.0 - ,O.0- 'qP; MI.$ - -0.09. 10- IqP; M,..,.- 0.01 10-'qi'..

.?4. V(0)in 2 1 u'0P-~. P

76.m 3a). ; 4* P0
76..wI (x - (Cos ax+ sin ax);

77 w (x)..-eIac4 R&-O +qi ~); O M q
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- 9r-. -) 040 -. O -

.W~~- M) .N~.~oe4~ gwDwa 0P..274-~- ()-.

d 0.291r.Q i1P (O -. 10 O OSt

f *2 ; . *09I

M 2

gy W M .00 -r; M , U.OP

h) AMO) - 00 2920 ; uAt).(O0-0454M

\.NPmIUAL *~bU-027~~4

~o75M' Nto (4em

whereI N--/E.

+? 1 .V WI{ +'O 'ita. (j.U) mju

* W1

4E1 '1-u .

whr s k14 , and 4p,(ty.ill w(m). z(MW and ).I(u are I. G. Bubnov'S

functions for beams which lie on an elastic base.

82. The elastic line of the pontoon is symzetrical relative

to the middle cro~r' cectiorn. At tile pocitiofl of the coordiiT.att3

axes indicated .in Fig. 71, the displacement of the pontoon's
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section, counting from the equilibrium position in the absence of

force P, Is determined by the expression
PO ' "' . v,(a) V3()+ V20 (U)

32V1iElul ' V, "U) Vs (a) +V .- (U) V" (U)
()V** (ax)]V. (U) V8 (u) • V, (U) v1 (M)

The bending moment in the middle cross section

"T 4 V V,(.)v,(V)+V.Cu)V.(u,

where 4 is the specific gravity of water.

83. (~Ccos ax - Sýax). m VW AJ 2 6

where .3/. --- 2)

P AR - ro
84i. y.' - --"

85. I, I _ _ (__ )
... no (U 2 ) + *, (a);"

where #,(m) are the Bubnov functions for beams which lie on an
elastic base; 2 -'T 4-1T" 2'•F"%•

86. x q \ • T( ) I. -(,,) rI. - 'I

-, I _,21t- o( u,) [, (",)1)

8 7. R,2 ,L-.- where

88. Solution. We will write the differential equation for
the bending of the beaT.

E1W'v (z) + kw (z) o (6)

and the boundary conditions

12(



*MI
S t (8) ino.6),and.(7)

where f is the sagging of the end sections of the shaft. Ve will

introduce the function of w0 which ic related to the elastic line

of beam w by the dependence

tr-i+f ( 9)

into the deliberation. aT

Substituting (8) in (6) and (7), we will have

:..- " W - k. X, ( Q (0) M

+ T IT. 2 P,0

The elastic line ol' a rigidly-fixed beam loaded by an evenly

distributed load of intLrsity q--kf is determined by equation (9)
and boundary conditions (10). Using I. 0. Bubnov's solution, we

will find the shear force at - 1: N1 -(u-)- .+ Thereore
QQ % T

The bending moments

644 + L a(.

"W 1 + -'R u , M,) sot (u).2 .

ql.'.+" . QI x,,.,

S~The intensity of the reaction or the elastic base

ta!oh[.I u)~~hIi9 (u), .t . ..a)U

ST Fa-U-' "
i 4 I
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where u- / and xe(a) and pe(w) are I. G. Bubnov's functions

for beams which lie on an elastic base.

+ o()+. U) 6." ($' (1'-, .),V -.

where and p,(u)9o(j, are I. G. Bubnov's functionz.

91. Solution. The differential equation for the bending of

the beam

let (x) w" (,)1"+ k (W-- h!f•(i

Since

ElI(s) we(s) -MW- (12)

where M(x) is the given bending moment, then, substituting (12)

in (11) and considering that

0et.

we will have

where a and b are constants determined from the condition: when

x=O and x-!!(z)- 0.

6E1 1____ 4

92. of•-j,%-. - where uT1/--E•-

Q 3El

$. -3 2. u4Ip (-).'i
$)4. 6w (0)---- t-- (l . 48I

II- - OMIY) 7()
V, (U.) +

SI ÷ --r•-



95. Solution. We will designate the elastic line of the beam
in section O0czie by w, and in section ciagt , by wg-wi+N,..
Then the differential equation which determines w1 will be

Elsw,'.- o. (jip

and its integral
a!& Ad +..x + ' + D. (15)

The differential equation which determines w2 will be
£IItv -h w, 0. (16)

Subtracting equation (14) from equation (16) and considering
that ft- -a + u.. we will obtain the differential equation for

Ele'. +--* (17)

The general integral of (17) can be written in the form

-m D.V. Is(x) -+1D-aV( (s-c)+ D,V , is (z:--)I +
+DýV, ig (x-c) -(A (x--1 , + a (z-- e) + C + DI. (18)

' where ~ j�-- 4,-; Vsla(x--)J are N. P. Pu:'!revckiy's functions.

In order to determine the integration constantb, ve will
'write the followinr cocnditions: at x-O wl='wmO; atc-t %.-o'o&-M

w,. - u and at a iEiw. oe.EI0; -P.

From these conditions we will find:

C = D 0o 0; Do - Do - O; DS -- V-; Do l -- o;
Am P v. (se F)'

6--- * vj (a') + *C V3(0') + V1 (C') v3(Mc)T

__ +___,2- . - (19)

2k =,VO'(M') +- "GV3C(•) + V1,Fa') V,(0')

The el..'tic line of the bear. in the final form
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.. , . - .+ I~rvsI~x~~1~ .-" ' (20)
,-A (x--e-- (=--9P'...

* -A. -)'5(oC)'

where A and B are determined.by formulae (19).

96. Solution. The differential equations for the bending

of beams I and II, respectively, are written in the form

• •.,-IV +,k (-W I - ,;
EIA,-,A (W, - ,).-q2  (21)

In this case, w(i~) and w2 (x) must satisfy the following boundary

conditions: at x-O

I',,.;-m3; E,,..-,I ; ,.; . ,Ew P; P . ; - ,

Ot -. (22)

r EI~s~tR 1 £IJ.-; E 1w -- P2; £umQ&.

Adding equations (21) we will find

E ljv~+E i,..,,'-~- q,. (23)

Dividing the first equation in system (21) by ElI and the second,

by El2 and subtracting the second equation from the first, we

will have

El%"'•+ q+ AT (241)

where

Based on conditions (22), the boundary conditions for function

w(x) at x=O are written in the form

1 (25)
EIVO P1'+ oil.
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at I.-

.so .• . . .
".b"-. I I* - (26)

Thus, equations (23) and (24) and boundary conditions (22)
and (25) mike it possible to determine the elastic lines of the
beams in question.

97. Solution. In the case in question (see the solution
to problem 96), in order to determine the elastic lines of the
beams it is possible to write the following differential equations
and boundary conditions

' • ' ~ ' " :e le,"1 + z fýW2 ' q, .

at jfpo;:l..

(29)

:1, • I --

Using~~~@ I. G .Bun' souto,.ewilwrt

Integrati:!g the first equation in system (27) four times *and

determining the integration constants from boundary conditions(28), we-will have at x"O

I1 1 w+EI~~m-~q~F.(30)

hence, if we take (29) into consideration

S (o(+ ,) + =+ 7,7i I -31)
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II
On the basis of I. G. Bubnov' s solution

From the first equation in system (27) at x-O, we will have

+(32)

From the Joint consideration of (31) and (32), we will finally

find .... ..... ..... . .

.. . . . . . . . . .... .. .. • A . 4 ,., . ....

"98"... 0. *.

' -. . .... : .. **i+. 2j{, a) *I (UL.

where, .T li , .). , ).x.., (,)-,.) are I. G. Bubnov's functions
for beams which lie on an elastic base.

V.(.. ) V. . (2".) +V o (2) + VY"v!.VaC2u) V9 )-V, v(* .(2v)I .

where v,(s uO);t ,u. ) are N. V. Mattes's functions;

I01. " MA " A- 1(u, V) ' I '' ;& "

• (i.+'V(. P S'-

"mTF4•7- +4,80 7-1•

where x,(.,:X,(uv);r 4 (", v);x,(u.P) a:', ii. V, Mattes's functions.

102. a) M(0)-S--- x.(u.V); N(•-)s ( +)-Y-

.O) - - (u., V; e 7 24-Er
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where i.(a.. v*).x *.Or .9 ). (. P)are N. V. Mattes's functions;

The origin of the coordinates is located halfway- down the

beam.

Ai~w - )" .. I. •,, .. , ... .- ,;1 +.0 765,(1 .' ) 7A .
M:,.. 0 - TO (I ,T V. .A .U 0) us - .. .

-'.,,O.•2 56.. ,.. .•. U - vv

(a. ) +" , 104.256 (14 v)h (u. 0.

A + +O.256(I + V) 2(a. V) us+ Al4* [,125 a(1 + v)*(u. v)+ 6.77A.~.~uw]* i

where 1 n., g 0); a•\ . 4. . . V.....

are N. V. Mattest" functions.

The origin of the coordinates is located halfway down

the beam.

108. Me'- I,GPO. 10 -o.69Pa; .a(2,26 No )197P

• .' "; 4" -. 2""1 6' ."

* 4 -

104.. Me-i0. ', M -04 " P; -W .6 No -. P/O ). "

wher-e Y is the coefficient of the effect of the concentrated

force applied to the beam in the main direction at the point where

it intersects the stringer on bending at this poirt.

106. Sagging increases n" times:
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"I-we

where J-__r. {i7 ; (ex) are G. V. Klishevich's

functions.

107. Mau". -() a "y s I Y 7
where 4,(*) is.I. G. Bubnov's function for beams on an elastic

base.

J O0B. a)* (0,560- -2,I.10"qLO; .M (0,5L)- -I5.4.I0"qL8; R' AX
XIOSqL2.* a m(0)- 2,16. 10- qL*, as(0.51)---I,31.10"mqL8 , as(I)--3.18. 10-qLa;. "'
I M(0.5L)--4,6S.10-qL3; R-- 210"4qL.

C) 'ii (0,41) - -14.6.10"PL. ft (")- 14,2-1O"sPL* M (0)- M (%) -- 0S1IPL.
M (0,XL) - -0.0735PL, R - --0.107P.

,a (0.5 - -O.05PL, M (0.51)- -0,15PL; R ,-0.1P.
* J -0.4/) ---- 57:10 qLS. M (0).- A (L) ',iO,004659L, M (0.5L) 4 ,. ;2j- -- 4. 10-"#qL; R 5. 6,21"qm.,- •

Reaction R is positive in these answers if the cross
T .connection supports the middle beam in the main direction.

i09. Solution. 'When a beam reinforced in the main direction

is present in the covering, the calculation of the cross connec-
tion is reduced to calculating a beam which lies on an elastic

base and which is rupported by an elastic support with rigidity
K- (n"1 ) )EL. am (see formula 3.6] at the point %.here it aitersects

the reinforced beam. For a cross connection which is rigidly
fastened at the ends, the reaction of the elastic support is

determined from the equation
(- "R,Us R

where P- ,l [see formula (3.2) at Q=qalJ,,..--'T';
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are I. 0. Bubnov's functions for beams on an elastic base; P, V

are the coefficients of the effect Fi the

r!ridity of the elastic base. Hence

Since the reaction of the middle beam in the main direction is

equal to R 1 .- 4a W,). at mr-, the total reaction of the middle

beam in the main direction is determined by the expression

(ao'+4.C()
S.° • "- "" ( + 41

"-"..where a '; .. -3

...................... ..... ..........

113. Instructions. The presence of reinforced beams which

are rigidly fixed at one end in the covering can be taken into

consideration by loading the cross connection with additional

forces P1 and installing additional supports with rigidity K at

the point of intersection with the reinforced beams. In the case

of a large number of reinforced beams, forces P1 and rigidities

K are spread to a length of 2a.

The moments in the cross connection m,--O,3QL; M, --O.6QWL.

The moments halfway down in ordinary and reinforced middle

beams in the main direction ,!- -0.o2Ql:m. 7,- -o.1OQl. where .Q-m1 . 1t.

:14. The moments in the cross connection:

M M 0, )...13;M L .6Q.

The greatest bending moment in the middle beam in the amain
.'Q1

direction will be halfway down (on the pillar); m.-a.•,r2e m-I.

135



115. Instructions. The unknown reaction of the pillar is

determined from the condition of the evenness of sagging of the

cross connection due to the pillar's pressure:

116, Instructions.. The calculation of the cross connection

is reduced to calculating a beam on an elastic base upon which
an elastic support with negative rigidity ).is installed

halfway down.

The moment in the span M(O)=-O.154QL and the moment in the

fixing -(.~m o.itL-OXQLt where Qmqota.

"- A - . 117. The moments in the cross

a " ,connection of the upper covering:p.*.

M*_*.-*.IQL;-Mdi--O.O6IQL. The moment half-

, way down the middle beam in the main

direction of the upper covering
m -O..142QL. The moment in the*1 max

I " .cross connection of the lower cove-

Fig. 232. ring: M;'-.O,4QL: M'-- o.O47QLVThe moment

halfway down the middle beam in the

main direction of the lower covering mrmax--O. 6 QL, where Q-q o al,.
R

118. Solution. Reaction intensity 1 and bending moment

intensity !E . act on the cross connection in the case of a

large number of beams in the main direction, where R is the

vertical reaction at the intersection point of the Cross connec-
tion with the beams in the main direction; w'(x) is the angle of
rotation of the cross connection which coincides with the beam

in the main direction.

We will write the equation for the equilibrium of an element

in the cross connection which has length dx (Fig. 232) in order

to derive the differential equation for the sagging of the cross

connection. Equating the projections of all the forces on axis
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Oz to zero, as well as the sum of its moments, we will have:

--. R- -R iN+C.. (33)

hence

dM (it) (x
6X+lw (314)

Since .v' we will obtain the differential equation for the

sagging of the cross connection in the form

S. W
&,-'v •••÷;•--•- (35.)

The sagging of the beam in the main direction at the point

of intersection with the cross connection

Q. z)I' R13
E (36)

where Q(x) is the load on the beam in the main direction; 0 and

Y are the coefficients of the effect. Eliminating reaction R

from equations (35) and (36), we will have

* E1 • ' P Q (x"
, - . () + a -+ (37)

aa

For a freely supported cross connection, it is possible to

distort the solution to equation (37) in the form

a-g

,,,,,.,n (38)

Expanding load Q(x) inco a series of sines, we will write

Q (-"K, (39)
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where ::: .,. .• "

• " ,: - -O.," -. . .... ,

Substituting (38) and (35) in (37), we will have
I. .6. . . . .*,*'*'' .::'"'-" *A'"!"

S. " .-. 1 ' ' ". •-. .• "." *..".'
• ,.. : • * ,/a .% . €.f* s ,.* d " . ,

Consequently, . .* s-"a " J,, . • • ,. ".
W " • 1 ,.*- e

119. Solution. Calculating the Covering by the Method of

Main Bends without Consideration of Shear Deformations. Using
1, c

appendix VIII in dependence on parameters 7;; and ,, let us
determine the characteristic numbers X1 and A2' the forms of the

main bends '12 and P21 and the intensities of distributed loads
and q2 " In this case, when In-* 1.25. 0., we will find:

in.-- I;' ).CS1-" I fqn -0,7 ; M .

.a - . ,• .
*"" ' y'" '" S.,• " " • j-n'*4 *

The load on the beam in the main direction

Q-qal,,O. OSqL

The rigidity factors of the elastic base:

k, 211 -nL-; k,! 15 345 L

The argument of the elastic base

4.~

We find the values of I. G. Bubnov's function according

to appendix VI:
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• -- "

II
AI..et (a). i lo l M 0l.) In)

1" I.42.. 054 -0.431 " OA0.7n
I ' 4,16 -. 043. -0.001o . 0,067.

.__.___ _ .1

We will determine the sagging in the middle of the vertical

stabilizer from the formula

qL

- . .. 10- .

The bending in the middle of the stringer

The bending moments in the middle of the vertical stabilizer

and stringer span:

QIS I" ao- - L' .~i~~x s'~) ~ (u' -.0.0039gqL'.

The bhendin morets in the support section of th~e vertical sal

stabilizer and the s tringer:

S 2- I V11',, U .. (go) x (,,, )] . . " 0,O]

Q I X.( +iO.x r) .OO.,32qLI.
j Ve Q~ Q J

The shear forces in the support t ection of the vertical stabi-

lizer and the stringer:

QL r llq,a )4 . Ytt0 ') .O96L;

Nt an LL I-1+ P
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* - * .,- -. . ;*. -. - --' " •- .- . - ._ . . - ... . . . . - _

IU. Calculating the Covering Accorod.ng to the Method of

Main Bends with Consideration of Shear in the Walls. With consi-

deration of shear, the coefficients of effect 0'10 1320 711, 712

and 72 for beams in the mair direction have the following values:

*61 +.';4 7 s (1 +273

Tin ,-4h"(I+31.2T O.AM0;

We will take the moment of inertia I,-o.l. I,-o..: ,.

The roots cf the characteristic determinant found according

to formula (3.16) are equal to: A1=0.1034; h2=O.0060. The forms

of the main bends determined according to formula (3.17) are:
"11=1; P21"" -116; p 2e=11 P12=-0.697.

The verification of the orthogonality condition:

The intensity of the distributed load in the first and second

main bends, calculated by formula (3.15):

Q (V..+ v, 0 1404L

-"__ -. /J , -i OI4O •

The rigidity factors of the elastic base:

k *= 94.2 El, m!60El.

The arguments of the elastic base;
4 " 4

", - �--1.31; 1 / 2,--267.
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The arguments which account for the effect of shear:

We will find N. V. Mattes's function from the tables In appendix

VII and the handbook (Sivertsev I. N., Davydov.V. V., Mattes N. V.
Students' Handbook on the Strength of Vessels with Internal Floa-
"tin_. M., 1950):

"Argment _ot I a k... l'" "x..w " '"
*I. -. I

1,31I; 6 .06N.00
• 2.67; g. n 5.62 -153, 0.057 , -.2o3 I

The bends in the middle of the vertical stabilizer and the
stringer: 9

IL'
* ..** .g . . .• " • . . /e . € •

We. 695 10-0
,•., . - 9),"!:.v~o-- • .lO. • ;,, ,,:

i415 16-~

-:..:.. ,-,, €;;,,-1."S
• ' ': " 1 " " "4'.5 . 1"l - .. "

The bending moments in the middle of the vertical stabilizer and
the stringer:

M3 . cp - 2 (vw&&t ,p + vj,• cp) , .O0049.ts;"

Aft., ,g ep ogap + VaaVi ep - 0029.

where

" 4 + ,12_

24 • 0 00631 t"

I, + " X2 (,•, ),1 " - • '
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The bending moments in the supporting sections of the vertical
stabilizer and the stringer:

A -4M.- 2 (T,.O , GO w • . ~ •
•. • . -0067 W

Mu.. -- Im (Y.g + w•m3..- O, Om•.OI~L

where

+ W. 0. IT,-- " "_ '- ;st !~ ,.., . *_.qL,

The shear forces in the supporting sectiot.s of the vertical
stabilizer and the stringer:

,-.A (v•,. w. +• vsa). o.07,•-,;
Xcl- lvaNs, + ,,N,.s) n.OO7TqL,.

where

"hi M - 0.04M

.... *+ :.1.+ T- ',')
o .. .- o -

•, ,,# • (es-, ' ... q' ,

A summary of the results obtained is given below:

"" moments In Bending moments in" I middle or span support section"Version,'
Vertical Stringer Vertical

' stabilier stabilizer Stringer

"- • -7,4 .r8 •LO ' . 10- 8 qL' 15.6.10-8 L' " 9,3.10-8 qL1
i . -4, 108 qL$ -2.8-I0-" qLs I.I-- . q8 jL* 6,7-10- qL'

Shear forces inSsupo s-ctons .Sarging in middle.

version support Scetions
esl Vertical Vertical

* .>. : tabilizer Stringer •St-blizee Stringer

*I. * .096qL'. 0.066qLl 476"t-1- - 3""1-*
- .. • Oo

qL 6,. 10.8 41'L.

* . II O.O71qL * ' 0.OO51qL* 9" W ,-10-0
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t204. Solution. As we know, the cha.,.
X and %2 , the forms of the main bends w11' j.,L2 .

given distributed loads ql ant q2 und ealso - arauments of
elastic base in each of the moin bends LL ar,, u2 do not depend no

the boundary conditions of the cross connections and can be Oter-mined from appendix Vjii depending on values C and .

In order to determine the eleteits of bending in each of the
main bends, it is necessary to wrtLe out the boundary conditions
at the ends of tha corresponding beams which lie on an elaetic
base. In this case, In each .main bend it suffices to determine
only bends p1 (O) and P2 (O) and bendir~g moments ut and V in the
supporting sections. In accordance with the condition AtiO; %1--
(the vertical stabilizer is freely supported); A2 -0; 54-0 (the
stringer is rigidly fixed). Using equations (3.19) and (3.21)

Staking p1 (O)=pO0 and P2 (0)=p , we will obtain six equations:

Alt, + ;%- 0;p,- +t•w, o; V4 + 9;u',h;. + ', .0"..;

Ir .-3 r 4_0_

Solving these equations, we will have:

. ". " " .0...

SRO -, ! --' - -

- 6 14 Va . ; '~ ---l (V2113 ".%

•g~~~~~~V1 (0,,41-,,, •:. •+•,(,,,- V...A , 4 _,•-.

-1 1 ' -- 31 1  ' -2 .

via . ) + Vi 'I,

PI'

+4



- - ,~ - . .-. - - . - . -' , - - . - - .-. , - - - --.~

where -

-.... I A 1.

LL
, ("i l); Sp( .;

8 -

I 
" 

0 lii

122. The bending elements of the covering:

CDP .... O1O11 1

-0. 0,37 - . 0 0 0.0.1.';

If -O00 "q8 ,, - '.O Iq';

S-- O -. 0.177 t& . 0.0205 O 0,014S 0,051
" - O,O --0.239 0.- 0 0 s 0,0161 --

123. Without consideration With consideration ofof shear shear

e 2 -- 0,0031 Sq;'0

#a co.-1 .0,04 L ,; "m I --OO ew s;
No m -m 0,002I340; MsI m -0,00(4Ls ;

M2 cp -- - - 0.,003q L '; A -Afg6fi
'Noo -I 0,0194 9'. M ,c €1 -- 0.(0045qLI;

No m 3- 0.0 7
3.

"M"g. on ?.9749l; MKx. t 3.60W; Mc.o,--3,I;

,Ml.cp • -3,01W•.
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126. The values of the bending moments:

* Vertical eatleal tringer
stabilizer. •st'r .'o " abilizer

A .? 0,0563 V-OIMf -0.067"-o . - .. 0 - 4.0156

127. Without consideration With consideration of
of she, t shear

fte-a.t-o.0,413 • ,

.o,, 0.33 1 . A,_
-. M . .•

A.. M eL 00 30 -qLf;

129 - .-013oLS;
• tc. ,,-- Mg oo006l

M**-ou.s ,,;. .,,m--..oo,wq.

12•9. M..,- oI3Iqi4; ' ...,u- 0 oGqL;
M6., - 0.00 , qL Al, - - 0,mm.02q.

ML0 -. 0,,,..O.S"PL.; e. p .-- 0.00IPLI:'

A0. on - 0 .O , 016P LI; Afte. - - - .O OO4aPL .

I PP.132. a) OAtT j-

P+ l) .Ib) W' ("÷ -• Y'

14



c) *)',,m"m.W1

d) - M

133. ,.2 where Q..

134.Q where 4.L

135. Af - 0.. i

136 2-a +

where n'is the ratio of the elongation of a broken beam to that of

a straight beam.

137. w- [-IFr r(7--r, - T*...-g ,.where 0i

the shear modulus.

138. IT

139. .'

1140. Solution. On the basis of the theorem of the recipro-

city of displacements, the bending in section x from concentrated

force P=I which is .,plied at the end of the cantilever is equal to

the bending in section x-Z from a concentrated force equal to i

which is applied in section x.

Therefore, the bending in section x-1 from the load applied

will be q1 ,s (3 416 "N "- be." . --' .• \(•E 7 - )2,- Y- .- --.

141.M "rI(-.'\ Ib i
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142. 7 -.7T'T

" "3* a b) " " - ".•ni b-

14. 7 .115: .T -:T: T I

145. The line of the effect on the bending moment at point

B of the beam is shown In Fig. 233, where

...-.-,€,)- o• , •, .-"0 • It., •- ]
" 1 ",

• " * " . . I • ' l . • : "l • ; .

-AI-." . "I& I.

Fig. 233. Fig. 234.

146. The line of the effect on the shear .'orce at point
B of the beam is shown in Fig. 234. The ordinates of the line
of the effect in the first and second spans

,07-0411 .+ (- z
4 I 0.79 1,25T, +0.83'~,"-' ... *O . g 3l I " ." - 1'1/

. ~ 0. 134"

In the cantilever portion of the beamln (x)) 0.22.4; 0 <1is I,;t 1Cv,,, Is+ Is;

lI+ iuXtIa+"L,+ C.
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- m.

149. e t n f .*A e di-

:I CI .* .. '

"" """ *. -"* "- ," ." S" I

* * •3 . . . ; -

0 31P. . .where ..

1i&9. The moments in fixings M,.'M,.•W9,. The bending infl

the middle of the span * . where I

150. MA-O. 8 5Pr. The moment is directed along the hour hand.

151. For the assemblies shown in Fig. 117, the horizontal

reaction of the support

I+ 2n--- + 12. +2X -,-:.
u . -W + + 3 ., .

The vertical reaction of the support is R=qr; at h-r H-0.68

qr. I

Vigure 235 shows the bending moment and shear diagrams.

#i

Fig. 235. Fig. 236.

For th, shown in Fig. 118, the bending moment at

the point of applicatIon of i;rcssure 11 in equal to M=-O.37Pr.

The bending mo:!.ernt ini the rigid f ixing !-',=-0.04t71r.
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..

The horizontal reaction in the fixing H-0.2P. The vertical
reaction in the fixing rR-t. The bending moment and shear diagrams
are shown in Fig. 236.

.. ' • " * -- -

153. aii-ag,.j,,o- .

154. Solution. In order to determine the unknown angle,

it is necessary to compose an 3xpression for displacement in the
direction perpendicular to that of the effect of force P And to

equate this displacement to zero.

We will apply concentrated force 1 which is directed perpen-
dicular to force P to cross section A. Then the equation of the

bending moment for the beam is noted in the form:

Ad(9) -(P Wi&.+P~c#4sa) fsin 9+2(Pcofs.-P l sin a)r sla'
... . . . . ... .. . ...

where ro is the length of the arc counted off from section A.

On the basis of the Castigliano theorem, the displacement in

the direction of force P9 will be

iw sin..GwsJ sln'pdy IP (w='- sint0) Sig IF X sino 9 dV--Psisa ssI dJ

Equating this displacement to zero, we will find ....- 2

156. The bending moments: M.=-0.0814 qr; M2=-O.0306 qr2;
M.-O.O414 qr. The force in the spacer rp-O,.7121r The shear

f orces: Ms,- 0359r N, - 0.12.No- 0. The axial forces: rs -1-.135

T, rs-- -- ,072; T----1,144#, (Fig. 237).
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157. The bending momente; M,--e=qo M,j 0,2e•.y; M'@0A . The

shear forces: N 2rO.59 qr; Nl-N 3mO. The axial forces Ti--1.293 qr;

T2 -- 1.50 qr; T3--I.707 qr (Fig. 238).

Fig. 237. Fig. 238.

158. Solution. We will designate the angle of rotation at

the origin of the coordinates of an infinite beam which lies on

an elastic base and is under the effect of arbitrary loadq(z)m9*yo(x)

at q0=1. by a Then it is possible to write Jw (X. ) dsmlq6

on the basis of the theorem of displacement reciprocity'. Hýence,
substituting expression win in q(x), we will have

* ~ (z)(Cos tLg 1  x ~ da*.j

-_•.•-....

The unknown moment in the fixing is determined from equation

0&-.(R)+#g4uu0; since w()- -, then 3e.6 uaiý,'. At

q (,'bI t'()ijI (Fig. 126)

* and, consequently,

-!*elSin, 0;'

.q'• -- ).7+,Fi. 127) "'" 5'n'1+"co" "I" .... "

and, consequently,

"'" ... . . ".-(I + .- , sin at +"cosu".l. .

2u• • . .. ,* *
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159. C at.
- 4 • .. • - .

1 6o. OP (-)oý+v

161. Instructions. Determine the bending moment in the

beam by integrating the differential equation (uI'-*-.r and

using the boundary conditions: x-.9. E.•, -. M'. I. l--N 1

The unknown moments Mo and M, and coefficients rn are deter-

mined from the system of equations:
eV eV - aV-0

-0;. 0; ~O

where ,
Y--r,-.-y - r.(,

162. The expression for potential energy must be supplemented

with the pot;ential shear energy A where

+-h (I- 2Sc +IS S

16,. Instructions. When calculating the generalized dis-
placements of the beams in the main direction which correspond

to generalized force rn, consider the fact that bending of the

beam in the main direction at the point ;..f intersection with the
cross connection can be determined from formula o*-
where R is the interaction reaction of the beams in both directions;

Q is the load on the beam in the main direction; I is the length
of the beam in the m-,ain direction; i is the moment of inertia of
the beam in the mnain direction; 0 and y are the coefficients of
the effect.

When there are matny beamns, the potential energy from sagging .

of all the beamsiin the main direction can be computed from the
formula vze J dv . %, where a is the distance between the beams
in the main direction; V1 is the potential encroiy from sagging of
one beam in the m,,ain direction.

I|
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The -=known moments MOand Mand. coefficients rn are dete .r-

mined from the system or equations:,') WV dl' F

where V is the potential energy from bending of the cross connec--

tion ~dx*..* *'*

165. 0 (X)a 41; +.I+~'A

166. a)w(, 2PP xa --.-* ~ sh .j b),()...S -rT

where aE

167'. q' where *4 3 1

Whe T~ATw({~r.eOWWi.R'The precise value of sagging

1.69. a) 8 1E b) T. IE79

170. Instructions. The form of the loss of stability or

the rod at an elastic support rigidity which is less than the

critical rigidity is a straight line which is anticym.metrical to

the middle of the span
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+71-w. ere -IN )where

The number of half-waves of the form of stability loss n
must be selected from the condition of obtaining the smallest
value of T*.

"172. 08 " . , "

If we consider the effect of deviation from Hooke's
law, E-E', where El is the given modulus of elasticity for the

portion of the beam with inertial moment of-the cross section I
l.and ratio --. is introduced instead of 410- where EV is

the given modulus for the middle section of the beam.

173, Solution. Let the lower rod bend according to the 'law
during the loss of stability, the upper - according

to the law ,ws-A',nAftis and the vertical rods bend according

to the law .a-AaeI,!: Then, from the condition of the equality
of the angles of rotation at the Junctions it is easy to obtain

the following relationships between the coefficients AO, A, and
Aiml

A2  A .-ma+ Ai -~g

or

With consideration of the effect of the deviation from

Hooke's law on stability, the potential energy of the deformation

of the rods in the assembly are written in the form

V-ITE.Ig j% 2 xd +jE1, Jm ds +EI, W' dz.
Th c.. s i

The work of the compressive forces will be
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where E0 is the given modulus for the lower rod; E2 is the given

modulus for the upper rod.

Substituting the values of bends wo, w, and w2 in these
expressions and integrating, we will have:

M.7 a . a _ . .) (
r',. .* .= ,,.t .. .¢ " .:.

Since *.0. then , N 1 l+ lts,+26,1+

174 T. Zvi

175. r 6.54a'E

176. El

177. 3E•. o

178. 38'l

179. 74.u•

180. * (X) -'~r~ -cIhz keg u~+$InhaJ, where 21 A"; XM -1,56?:.

419(. h ( K) +(I - (A.)8.)(2 )- IT17u + siu)

where 2 (hMa h

U. M, (0) -El iinO2H _" 2uos2V
M( rmT I -co 2v-a sn 2u15. .U-.

El I2 -- in : 2" R (0 R'- R1)

"I- L- cI 2a -- , sin 2a r
. 183.- M (0). - A (1) ,- I IL ilu:"

• ~ ~ ~ ~ ~ 0 ;e•---'-- R()= - -A R (0 -
4EL lI lu IIs "!" ""

we m -•-/---, w uro I''- ". ; -- 2



BMW

184. ,a- o.u" 4-, •..136& 1 -o.- "-
le.. - ' - .a.,' .*.

185. .

"r where"

187. Instructions. Use graphs [3, T II] to determine the
stresG. In the cross section 6lmax,-5 6 6 0 kg/cm2 (in the bulkhead

frame); in the meridional section - 2max--5420 kg/cm2 (in, the
middle of the spacing).

188.- where 2--i.M

189.To er.

190. Instructions. Write the expression for the bending
of the beam with consideration of a Jump in the shear force at

x-a. The stability equation

.4 4.4

,• ." ." -• " 4. • " 4 . "
5

"

19. Instructions. The form of the stability loss will be
symmetrical or antisymmetrical to the middle of the length of the
beam.

"" .M-RIB/at K--{ >--;"

M'EI

192. Instructions. The shape of the stability loss will be
antisymmetric to the middle of the span r,-a-E.

15ý



193. We will use the instructions to problem 190. TMC-I.

194. The shape of the beam's stability lossE will be

symmetrical to its middle

I- [-T -fi"r..-( ---F,1,,- .-
At ".a-j and *..._.. , the stability equation will have the

form , where T , hence

196. The system of differential equations which describe
the neutral equilibrium of the upper and lower beams is written

in the form

"EY+Ti+f'(u urimO;

siar.+ (- -, (4o)

where w, and w2 are the bends of these beams.

The solution to system (40) which satisfies the boundary

conditions is determined in the form:

Substituting (41) in (40), we will obtain a system of homogeneous

algebraic equations relative to the unknown a1 and a 2 . Equating

the determinant of this system to zero, we will obtain the follow-

ing expression for the Euler force:
"T-- ,'i a114 l' 'I

where the number n must be selected from the condition of obtaining

the smallest value of T#.

156
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197. Instructions. In order to find the Euler loads one

should write the structure's equilibrium equation for the deviating

positions considering that the angle between the rod5 remain right

angles in the deviating position too. Then for the structure

shown in Fig. 151, ,--. and for the structure shown in Fig.
152s s%-j..

198. 1- 3=.2•

199. To 43.4- 3 -

200.--. ... -,r 1 in; with consideration of ehear

jSM.IEI; j '-"- 4; without consideration of shear, Tm-6.,a -.

201•

202 -,.4,. (-t-.

203. a o.41.

204. Is•'O.5;'T- at ,,a'o.sw. At is<'o.s4u r,

Ts is determined from the equation

;1' 7_41 M" where Am O.-6GLI.* I

205. T,-, (

206.

201. r,-- :O.O05E-.

208. T,.•4 7'-L-
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209. Three supports.

210. P kg/cn2 .

211. T,7n14'-L. During "spreading" ",-J)4.46 .

2 2 •,1 oSE Rife•.

2 . During "spreading" ,

213. e.m-2e k.fC% 2

21 r. x,- -

215. -- 1. 10S a#, C- 12 .G;1-e .

2:16. -311 : 4 • .! - 4

217. -4.1310-6; A for a covering without carlings
1=22.7- 10-4 m4.

2:18. vp- 3Wr0 kgJc 2 .m

FTD-ID(RS) i-2386-75 158

, • 4 i " • 1 lm ," " •• .. rli• -... . . .. .. .



S.z

-u .3 . ' I .45 1' 4t W_.

-'1 - 41 4 1 *

41:~. j 41 '34N
a, 44 4 8 L h

.T-:(S1 -238- 1594* .* 4



4 -4 4 "-1 -- 1

A -•

~a

•I.1' :-I":t I. * i d!.K.I: *.j ..

,.-1. " . . . . w . - .
44 41 Z. W. it 4 41

*~~ ~ 31: *~

0 Ir Ir 3 i .E AA I

'4 H 4 41 4 4 .'4 M -, R ' 41

41 41 " "41 41 41 A l' ".41. M 41 . " .

.. . ..5 tDI:.8 . I .60

:• ,, .,,. 3'. I S•. ,,.
{ • • :8 * .. . -. 6 .... a : . :.' "' - - . ,-;- -f • .

', -•.. , +, " -. ,.-, ,: - . . .. a..•' + . .. '- • . . ,

• ""• I - *' " S ,." !.::-Ei . ,-3 .

,.. . . .,. 6.. .. b? . :_
",:-.41 * -.4.-1 . 414 ":

,.6'. . 6 •.. -". ."

S... * o ' .. " o .•-_ i ' I .4 14, 44 ., • , ' ':.44 .. • 4 .. 1 9j:.. ''. '. 44. -.

44 1'41 44 41 .•."i .' 4 . '• " 446

.: : .4 .• , . .•,. . .! .* .. , ....

cJ• '" I.5

FTD-:D (RS•)I]-2)386-'75 1.60 I


